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Kidney epithelium specific deletion of
kelch-like ECH-associated protein 1 (Keap1)
causes hydronephrosis in mice
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Abstract

Background: Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit
progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently
demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from
AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal
tubular epithelial cells.

Methods: We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1
floxed (Keap1f/f) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1-/- mice and its effect on
Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was
performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess
systemic effects of defective kidney development. Student’s T test was used to determine statistical difference
between the groups.

Results: Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes,
Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1-/- mice at baseline. Renal epithelial cell specific deletion
of Keap1 in Ksp-Keap1-/- mice caused marked renal pelvic expansion and significant compression of medullary
parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old
Ksp-Keap1-/- mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed
significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume
(p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1-/- mice in comparison to Keap1f/f mice.

Conclusions: These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an
abnormal kidney development consistent with hydronephrosis and reveals a novel Keap1 mediated signaling pathway
in renal development.
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Background
The Keap1-Nrf2 cytoprotective response is critical to
combat reactive oxygen species (ROS) and electrophiles
generated during endogenous and exogenous stresses
[1–3]. Keap1 (Kelch-like ECH-associated protein 1) is a
repressor protein that regulates transcriptional activity
of Nrf2 (nuclear factor erythroid 2-related factor 2) by

retaining it in the cytoplasm and maintaining its homeo-
static level by directing it to proteasomal degradation
[4–6]. However, during stress conditions, such as ische-
mic and nephrotoxic injury, Nrf2 is released in to the
nucleus to up regulate the transcription of cytoprotective
genes. An insufficient Nrf2 activity has been shown to
worsen ischemia induced kidney injury and accelerate
disease progression largely due to an attenuated antioxi-
dant response [1, 7]. Nrf2 levels have also been shown to
decrease with ageing and correlate with the progression
of many human diseases [8].
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Attempts to up regulate global Nrf2 levels have been
difficult because homozygous knock out of Keap1 gene
is lethal. Whole body Keap1-/- mice do not survive be-
yond 21 days postnatal due to progressive asthenia as a
result of hyperkeratosis of esophagus and forestomach
[9]. However, recent use of Cre-LoxP technology has
facilitated researchers to up regulate Nrf2 activity in a
tissue specific manner [10]. We recently generated
mice with increased Nrf2 activity in T lymphocyte by
genetically deleting Keap1 and found these mice to be
significantly protected from ischemia reperfusion induced
AKI [11].
In the present study we deleted Keap1 in renal epithe-

lial cells, specifically in the distal convoluted tubules and
collecting ducts, primarily to accomplish kidney epithelial
cell specific up regulation of Nrf2 mediated antioxidant
response and to study its effect on ischemic kidney injury.
Surprisingly, renal epithelial cell specific deletion of Keap1

resulted in significant developmental defects in the col-
lecting system. These anatomical defects were also ac-
companied by polycythemia. In summary, these data
demonstrate that Keap1 may be involved in normal kid-
ney development and that a defective Keap1 results in
hydronephrosis.

Methods
Generation and characterization of Ksp-Keap1-/- mice
Kidney epithelial cell specific Keap1-deficient (henceforth
referred to as Ksp-Keap1-/-) mice were generated by
breeding Keap1f/f mice with Ksp-Cre mice. Keap1f/f mice
used for these studies have already been characterized
[10, 12]. Male Ksp-Cre mice were purchased from Jackson
Laboratories and a detail description about its generation
is provided on their website (http://jaxmice.jax.org/strain/
012237.html). The Cre transgene in Ksp-Cre mice is under
the control of cadherin 16 (Cdh16 or Ksp-cadherin)

Table 1 Primer information for PCR based confirmation of Cre, Keap1 floxed and keap1 deleted allele status

S No. Primer name Sequence 5′-3′ Product size

1 Generic Cre Forward Primer GCGGTCTGGCAGTAAAAACTATC 100bp

Generic Cre Reverse Primer GTGAAACAGCATTGCTGTCACTT

2 Keap1flox Forward Primer CGAGGAAGCGTTTGCTTTAC keap1 floxed allele: 383bp

Keap1flox Reverse Primer GAGTCACCGTAAGCCTGGTC

3 Keap1 deletion Forward Primer GAGTCCACAGTGTGTGGCC WT allele: 2954bp
Truncated allele: 288bp

Keap1 deletion Reverse Primer GAGTCACCGTAAGCCTGGTC

a b
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Fig. 1 Generation and characterization of Ksp-Keap1-/- mice. a Ksp-Cre mice were crossed with Keap1f/f mice to generate Ksp-Keap1-/- mice. b Mice
were genotyped to confirm the presence of Cre and floxed Keap1 allele using Cre and flox specific primers. c Ksp-Cre mediated deletion of Keap1
exon 2 and 3 resulted in a truncated allele (288 bp) in comparison to WT allele (2954 bp). d mRNA analysis of Nrf2 targets showed increased expression
on Nqo1 (p≤ 0.0001), Gclm (p≤ 0.05) and Gclc (p≤ 0.001) but reduced expression of HO-1 (p =≤0.001) and Nrf2 (p=≤0.001). b Lane 1 = 100 bp DNA
ladder, lane 2 = 324 bp internal positive control and 100 bp Cre and lane 3 = 383 bp Keap1 floxed. c Lane 1 = 1 kb DNA ladder, lane 2 = 2954 bp WT
allele (Keap1f/f), lane 3 = 288 bp truncated allele (Ksp-Keap1-/-) and lane 4 = 100 bp DNA ladder
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promoter and specifically deletes any LoxP flanked gene
in the renal epithelium. Mice were genotyped to confirm
the presence of Cre transgene, flox status using PCR
primer sets listed in Table 1.

Isolation of kidney epithelial cells
Kidney epithelial cells were isolated using a previously de-
scribed method (2) to ascertain deletion of Keap1 and to
quantify its effect on Nrf2 activity. Briefly, kidneys were iso-
lated, from anesthetized Keap1f/f (n = 3) and Ksp-Keap1-/-

mice (n = 3) following exsanguination, minced and incu-
bated in dispase II for 45 min at 37 °C. Minced tissue was
passed through 100 μm cell strainer followed by 70 μm
strainer, resuspended in DMEM/HEPES and incubated for
30 min on IgG coated plates at 37 °C in CO2 incubator to
remove macrophages and other leukocytes. Non-adherent
cells were further incubated on 100 mm petri dishes for 2 h
to remove fibroblasts and remaining nonadherent cells
were used for DNA and RNA isolation.

Keap1 deletion PCR
To confirm Ksp-Cre mediated deletion of Keap1 exon 2
and 3, DNA was isolated from kidney epithelial cells

using DNA isolation kit (QIAGEN). Keap1 deletion
specific primers (Table 1) spanning exon 2 and 3 were used
to detect intact or truncated Keap1 alleles using PCR.

Nrf2 target gene expression analysis
RNA was isolated from kidney epithelial cells using RNA
mini kit (QIAGEN) to quantify Nrf2 and its target gene
expression at mRNA level. We measured Nrf2, Nqo1,
HO-1, Gclm and Gclc levels with realtime PCR using gene
specific Taqman primer and probe sets (Life Technologies).
Actin was used to normalize gene expression data and
fold change was calculated by delta delta CT method as
described previously (11).

Kidney histology
Upon sacrifice the kidneys were harvested and fixed with
10 % buffered formalin phosphate and embedded with
paraffin for histological evaluation. Tissue sections (5 μm)
were stained with hematoxylin and eosin (H&E) and ex-
amined for gross histological abnormalities by an expert
renal pathologist (LJA) blinded to the groups.

Keap1f/f Ksp-Keap1-/-
a b

c

Keap1f/fKsp-Keap1-/-

C

C

C

C

M

M

M

M

M

M

Fig. 2 Anatomical and histological studies of 3 month old Ksp-Keap1-/- and Keap1f/f mice. a Kidneys from Ksp-Keap1-/- mice were slightly bigger.
b A transverse section through kidney show missing or compressed medullary tissue in Ksp-Keap1-/- kidney. c Hematoxylin and eosin (H&E)
stained kidney section at different levels of magnification showing normal cortex, however significant medullary tissue is missing from Ksp-Keap1-/-

kidney. The size of the bars is 200 μm, 100 μm and 50 μm for X25, X100 and X200 images respectively
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Complete blood, serum and urine analysis
Blood was collected in microtainers with or without
K2EDTA (BD). Urine samples were collected by placing
the mice on a microtitre plate for 60 min. Uncoagulated
blood samples were analyzed with HemaVet multispecies
hematology instrument (Drew Scientific) to measure per-
centage of leucocytes, platelets, erythrocytes hemoglobin,
mean cell volume and mean cell hemoglobin. Biochemical
assessment of serum chloride and urinary calcium and total
protein was done in automated VetAce clinical chemistry
system (Alfa Wasserman Diagnostic Technologies).

Data analysis
Means were compared by a paired, two-tailed student’s
t test for a single comparison between two groups. Stat-
istical significance was accepted at a p value ≤0.05.

Results and discussion
PCR based characterization confirmed the deletion of
Keap1 exon 2 and 3 in Ksp-Keap1-/- mice (Fig. 1b, c). Fur-
thermore, Nrf2 target gene Nqo1, Gclm and Gclc were

significantly upregulated in kidney epithelial cell from
Ksp-Keap1-/- mice compared to Keap1f/f mice (Fig. 1d),
which is consistent with our previous findings in T lym-
phocytes (11). Interestingly, mRNA levels of Nrf2 and
HO-1 were found to be reduced in the kidney epithelial
cells of Ksp-Keap1-/- mice. Kidneys from Ksp-Keap1-/-

mice were slightly larger than the age matched Keap1f/f

control mice and showed unexpected gross developmental
defects (Fig. 2a, b). Furthermore, transverse sections of the
kidneys of all Ksp-Keap1-/- mice (n = 5) revealed moderate
to marked renal pelvic expansion and significant compres-
sion of medullary parenchyma in comparison to Keap1f/f

kidneys (n = 5). Histological investigation of Ksp-Keap1-/-

kidneys with H&E stained sections revealed largely
missing or underdeveloped medullary region whereas
the cortical region appeared to be normal (Fig. 2c). We
did not see any obstruction in the ureters of these mice,
which is the most common cause of hydronephrosis in
humans. All the other organs (liver, spleen, heart, skin,
brain etc.) were grossly normal and none of them
showed any signs of histological abnormality indicating
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Fig. 3 Comparison of kidney size in 6 month old Ksp-Keap1-/- mice (n = 5) to 3 month old Ksp-Keap1-/- (n = 4) and 6 month old Keap1f/f mice
(n = 5). Kidneys of 6 month old Ksp-Keap1-/- mice were significantly bigger than age matched Keap1f/f mice (14 ± 0.8 vs 11.2 ± 0.3 mm, p = 0.05).
Although Kidneys of 3 month old Ksp-Keap1-/- mice were smaller than 6 month old Ksp-Keap1-/- mice the difference was not statistically significant
(12.4 ± 0.6 vs 14 ± 0.8, ns). Panels a and b showing transverse sections of kidneys with hydronephrosis from 3 month and 6 month old mice. Data are
presented as mean ± standard deviation (SD)
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that Ksp-cre specifically targets kidney epithelial cells. Fur-
thermore, the kidneys from 6 month-old Ksp-Keap1-/-

mice (n = 5) showed progressive hydronephrosis in com-
parison to 3 month-old Ksp-Keap1-/- mice (n = 4) (Fig. 3a)
and were significantly bigger (p = 0.05) than kidneys from
6 month-old Keap1f/f control mice (Fig. 3b). We observed
similar findings in 3 month and 6 month-old female mice,
indicating that Keap1 deletion affects kidney development
in both sexes.
Complete blood count (CBC) analysis of 3 week old

male mice (n = 3 per group) did not reveal any difference
in leukocyte and platelet populations (Fig. 4a, b) however,
there was significantly higher red blood cells (p = 0.04),
hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell
volume (p = 0.02) and mean cell hemoglobin concentra-
tion (p = 0.003) in Ksp-Keap1-/- mice as compared to
Keap1f/f control mice of similar age (Fig. 4c). Furthermore

serum chloride levels was significantly higher (p = 0.05)
in Ksp-Keap1-/- mice as compared to Keap1f/f control
mice (Fig. 4d). Additionally, urinary calcium (p = 0.02)
and total protein (p = 0.007) were significantly lower in
Ksp-Keap1-/- mice as compared to control mice (Fig. 4e).
Our preliminary observation in older (≥6 months)
Ksp-Keap1-/- mice indicate that Keap1 deletion results
in progressive kidney damage that completely destroys
normal kidney tissue.
In the present study, we generated mice with renal epi-

thelial cell specific deletion of Keap1 by crossing Ksp-Cre
mice with Keap1f/f mice to primarily up regulate Nrf2
in kidney epithelial cells and to examine its effect on
ischemic kidney injury. Cre recombinase in Ksp-Cre mice
is expected to delete any LoxP flanked gene in epithelial
cells of developing nephrons, ureteric bud, mesonephric
tubules, Wolffian duct, and Mullerian duct. In the adult
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Fig. 4 Hematological and biochemical analysis of Ksp-Keap1-/- mice. a and b Complete blood count analysis showed comparable leucocyte and
platelet counts in Ksp-Keap1-/- and Keap1f/f mice. c Ksp-Keap1-/- mice had significantly higher red blood cells (9.6 ± 0.3 vs 9 ± 0.1 M/μL, p = 0.04),
hemoglobin (13.9 ± 0.6 vs 12.5 ± 0.2 g/dL, p = 0.01), hematocrit (47.3 ± 2.0 % vs 42.3 ± 0.6, p = 0.02), mean cell volume (49 ± 1.0 vs 46.7 ± 0.5 fL,
p = 0.02) and mean cell Hb concentration (14.4 ± 0.2 vs 13.8 ± 0.1 g/dL, p = 0.003) in comparison to age matched Keap1f/f mice. d Chloride level in
serum was significantly higher (120 ± 1 vs 115 ± 3 mmol/L, p = 0.05) in Ksp-Keap1-/- mice as compared to Keap1f/f control mice. e Urinary calcium
(1.3 ± 1.2 vs 3.9 ± 0.3 mg/dL, p = 0.02) and total protein (0.1vs 0.3 g/dL, p = 0.007) were significantly lower in Ksp-Keap1-/- mice as compared to
Keap1f/f mice. Data are presented as mean ± standard deviation (SD)
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mouse Cre expression is limited to the renal tubules es-
pecially the collecting ducts, loops of Henle and distal
tubules [13]. To our surprise, we observed marked renal
pelvic expansion and significant compression of medullary
parenchyma in kidneys from Ksp-Keap1-/- mice that was
consistent with hydronephrosis. Furthermore, we found
kidneys of both male and female mice were affected indi-
cating that Keap1 deletion is deleterious in both sexes.
It is unclear how Keap1 regulates or is involved in

normal kidney development. Several other deficiencies
such as Egf receptor, Claudin-4, Dlg1 and 17q12 micro-
deletion have also been linked to abnormal kidney devel-
opment [14–17]. Moreover, in a previous human case
report Stark et al. [18] presented similar findings in a
16 year old white male with chronic kidney disease and
a history of obstructive uropathy. The patient had high
red blood cells count and high erythropoietin but normal
platelet and leukocyte count. There were no symptoms of
cardiac, cerebral or pulmonary abnormalities. These
human findings are very similar to our present finding.
Hydronephrosis results in significant tissue compression

that is stretched out but not destroyed. This compression
is thought to lead to local ischemia that stimulates
erythropoietin production by cortical cell that subse-
quently result in increased erythropoiesis [19, 20]. The
elevated red blood cell count and hemoglobin is believed
to be an effect of decreased oxygen delivery in the com-
pressed hydronephrosed kidney tissue [21]. Events down-
stream of the oxygen-sensitive transcription factor are
involved in the erythropoietin gene expression, including
the production of specific transcription factor such as
hypoxia-inducible factor 1 (HIF-1) [22]. A hypoxic stimu-
lus increases the number of erythropoetin-producing cells
in the cortex of kidney, but not the amount of erythropoi-
etin produced per cell. These symptoms are corroborated
by other finding indicating that the presence of hydro-
phephrosis, due to multiple etiologies decreases oxygen
delivery with subsequent increase in erythropoietin
production.

Conclusions
In conclusion, our unexpected finding may suggest a
novel role for Keap1 mediated signaling pathway in renal
development and indicate that absence of Keap1 in renal
tubular epithelial cells significantly affects normal kidney
development leading to hydronephrosis. Furthermore, the
differences in CBC and other serum and urinary markers
measured may indicate secondary systemic effects of
hydronephrotic kidneys. Understanding the interaction
between Keap1 and kidney development warrants fur-
ther studies.
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