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Abstract
Objective Postoperative acute kidney injury (PO-AKI) is a common complication after cardiac surgery. We aimed to 
evaluate whether machine learning algorithms could significantly improve the risk prediction of PO-AKI.

Methods The retrospective cohort study included 2310 adult patients undergoing cardiac surgery in a tertiary 
teaching hospital, China. Postoperative AKI and severe AKI were identified by the modified KDIGO definition. The 
sample was randomly divided into a derivation set and a validation set based on a ratio of 4:1. Exploiting conventional 
logistic regression (LR) and five ML algorithms including decision tree, random forest, gradient boosting classifier 
(GBC), Gaussian Naive Bayes and multilayer perceptron, we developed and validated the prediction models of PO-AKI. 
We implemented the interpretation of models using SHapley Additive exPlanation (SHAP) analysis.

Results Postoperative AKI and severe AKI occurred in 1020 (44.2%) and 286 (12.4%) patients, respectively. Compared 
with the five ML models, LR model for PO-AKI exhibited the largest AUC (0.812, 95%CI: 0.756, 0.860, all P < 0.05), 
sensitivity (0.774, 95%CI: 0.719, 0.813), accuracy (0.753, 95%CI: 0.719, 0.781) and Youden index (0.513, 95%CI: 0.451, 
0.573). Regarding severe AKI, GBC algorithm showed a significantly higher AUC than the other four ML models (all 
P < 0.05). Although no significant difference (P = 0.173) was observed in AUCs between GBC (0.86, 95%CI: 0.808, 
0.902) and conventional logistic regression (0.803, 95%CI: 0.746, 0.852), GBC achieved greater sensitivity, accuracy 
and Youden index than conventional LR. Notably, SHAP analyses showed that preoperative serum creatinine, 
hyperlipidemia, lipid-lowering agents and assisted ventilation time were consistently among the top five important 
predictors for both postoperative AKI and severe AKI.

Conclusion Logistic regression and GBC algorithm demonstrated moderate to good discrimination and superior 
performance in predicting PO-AKI and severe AKI, respectively. Interpretation of the models identified the key 
contributors to the predictions, which could potentially inform clinical interventions.
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Introduction
Postoperative acute kidney injury (PO-AKI) is a com-
mon complication after cardiac and vascular surgery that 
is strongly associated with increased risk of in-hospital 
mortality, prolonged intensive care unit (ICU) admis-
sion and hospital stay, and greater healthcare costs [1]. 
Its prevalence has been reported to range from 20 to 
70% and vary by the type of surgery and the criteria of 
the AKI definition [2, 3]. Even minor increases in serum 
creatinine after cardiac surgery matter and add to the 
risk of death [4]. Despite the fact that many episodes of 
postoperative AKI are reversible within days or weeks of 
onset, results from a number of epidemiological studies 
conducted over the last decade reveal a substantial asso-
ciation of AKI with subsequent chronic kidney disease 
and long-term adverse consequences [5, 6], which leads 
to a considerable disease burden. The pathophysiological 
mechanisms of PO-AKI are multifactorial and still largely 
unknown. Currently, the health care of PO-AKI patients 
is mainly based on supportive therapy. The best approach 
to AKI management is prevention. The success of many 
preventative treatment strategies rests on the ability to 
correctly identify patients at high risk of developing AKI 
prior to major changes in serum creatinine or urine out-
put. Therefore, perioperative accurate assessment of AKI 
risk and specific preventive strategies are urgent to be 
established. To early identify patients at higher risk for 
PO-AKI, previous studies have developed a number of 
potentially useful clinical risk prediction models. But the 
generalization of the models is uncertain. Most models 
suffer from differing AKI definitions, insufficient peri-
operative variables, small cohorts, and a lack of external 
validation [7]. Moreover, these models were designed 
mainly for western populations and did not represent 
good performance among Chinese patients.

In recent years, machine learning (ML) techniques 
have also been increasingly employed to make predic-
tions and have shown promise as a potentially powerful 
tool to detect data patterns and trends that could remain 
undiscovered using traditional statistical method [8–12]. 
Decision trees (DT) are versatile and intuitive models 
that use a tree-like structure to make decisions or pre-
dictions. Random Forest (RF) is an ensemble learning 
method that combines multiple decision trees to make 
predictions by aggregating the votes or averaging the 
outputs of individual trees. Gradient Boosting Classifier 
(GBC) is another ensemble learning method that builds 
a predictive model by combining multiple weak classifi-
ers in a stage-wise manner. Gaussian Naive Bayes (GNB) 
is a probabilistic classification algorithm based on Bayes’ 
theorem and calculates the posterior probability of each 
class for a given instance and assigns the class with the 
highest probability as the predicted class. Multilayer 
Perceptron (MLP) is a type of artificial neural network 

that consists of multiple layers of interconnected nodes. 
These algorithms have their own strengths and weak-
nesses. It’s important to experiment and evaluate dif-
ferent algorithms to find the best fit for a specific task. 
Compared with the CSM approach, ML algorithms could 
theoretically perform better in measuring nonlinear 
associations, dealing with high-dimensional data, which 
may enhance risk prediction. However, the existing stud-
ies did not systematically compare and statistically test 
the difference in performance among ML algorithms and 
the CSM approach in predicting PO-AKI [13]. Some of 
the existing ML models did not report more interpretable 
indicators for model assessment, such as sensitivity and 
specificity, which were highly emphasized in clinical con-
ditions [8, 14].

Interpretation of ML models is another crucial issue 
that refers to the challenge of understanding how and 
why a machine learning model arrived at a particular pre-
diction or decision. Machine learning models are often 
regarded as black boxes due to their complex and nonlin-
ear nature. This lack of transparency hinders the under-
standing of the factors driving predictions and can limit 
their adoption in critical applications. However, several 
approaches can be used to enhance model interpret-
ability and overcome this limitation. Techniques such as 
SHAP (SHapley Additive exPlanations) method or per-
mutation feature importance assign weights or rankings 
to each feature based on their impact on the model’s out-
put, thereby enabling insights into the underlying factors 
and increasing the trustworthiness of predictive models. 
Although previous studies suggested that ML approaches 
provided good prediction discrimination, the interpret-
ability of the models was lacking, which limited their 
application in an actual clinical setting.

Therefore, we hypothesized that ML techniques may 
outperform traditional logistic regression analysis in the 
prediction of postoperative AKI risk following cardiac 
surgery. The study aimed to systematically compare the 
performance of multiple different ML algorithms and LR 
in predicting two outcomes separately, including post-
operative AKI and severe AKI as well. We also sought 
to further explain the prediction of the best-performing 
model at the population and individual levels.

Methods
Study design
In the present retrospective cohort study, we enrolled 
2327 patients who were over eighteen years old and 
underwent cardiac surgeries in a tertiary teaching hospi-
tal during January 2018 through December 2020. A total 
of 17 patients were excluded according to the criteria 
below: (a) preoperative dialysis or renal transplantation 
(4 cases); (b) used nephrotoxic drugs within seven days 
before surgery: gentamicin and vancomycin (2 cases); (c) 
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preoperative or postoperative serum creatinine was not 
available (11 cases). The rationale behind the exclusion 
was to avoid the influence of the baseline factors above 
on postoperative renal function or PO-AKI diagnosis. 
Finally, 2310 participants were eligible for the present 
analysis. The study was approved by the Medical Ethics 
Committee of Central China Fuwai Hospital of Zheng-
zhou University (LUNSHEN 2020-07). This work has 
followed the TRIPOD (transparent reporting of a mul-
tivariable prediction model for individual prognosis or 
diagnosis) guidance for the reporting of studies develop-
ing and validating a prediction model [15].

Data collection
We applied to the China Cardiac Surgery Registry 
(CCSR) database for the data submitted by our institute. 
CCSR was a web-based and paperless data collection sys-
tem. Data quality control measures for the CCSR data-
base were described in another study [16] introducing 
the design and data audit of the CCSR. Further, to ensure 
the accuracy and reliability of the data, two investiga-
tors screened the data for the missing or outlier values 
and replaced them with the true values extracted from 
electronic health records (EHR). The available variables 
regarding demographics, comorbidities, previous cardiac 
interventions, preoperative medications, perioperative 
examinations, intraoperative data, postoperative compli-
cations and outcomes were included in the present analy-
ses. Based on evidence from previous studies, clinical 
guidelines, or expert opinions, predictor selection during 
model development was conducted among preoperative 
and intraoperative variables.

Demographics and presentation of comorbidities 
included gender, age, BMI, smoker regardless of whether 
the patient quit smoking, diabetes mellitus, hypertension, 
hyperlipidemia, chronic renal failure, chronic obstructive 
pulmonary disease (COPD), peripheral vascular disease, 
cerebrovascular accident (CA), congestive cardiac fail-
ure, Canadian Cardiovascular Society (CCS) angina class, 
New York Heart Association (NYHA) class, arrhythmia, 
and previous myocardial infarction (MI). Previous car-
diac intervention included previous percutaneous coro-
nary intervention (PCI) and previous cardiac surgery. 
Preoperative medications included intravenous nitro-
glycerin injection, catecholamine injection, β-blockers, 
angiotensin-converting-enzyme inhibitor (ACEi)/ angio-
tensin II receptor blocker (ARB), lipid-lowering agents. 
Perioperative examinations included the last preopera-
tive serum creatinine (SCr), peak postoperative SCr, last 
preoperative left ventricular ejection fraction (LVEF), 
last preoperative left ventricular end-diastolic diameter 
(LVEDD), number of diseased coronary vessels. Intra-
operative data included surgery type, cardiopulmonary 
bypass (CPB), aortic cross-clamping (ACC), intra-aortic 

balloon pump (IABP) usage, intraoperative blood prod-
uct transfusion (BPT), postoperative BPT, and assisted 
ventilation time. BPT refers to packed red blood cells 
(pRBC), fresh frozen plasma, cryoprecipitate and platelet.

Outcomes
We considered AKI and severe AKI after cardiac surgery 
as the primary and secondary outcomes, respectively. 
AKI diagnosis was based on a modified KDIGO (Kidney 
Disease: Improving Global Outcomes) definition [17] 
by using serum creatinine (SCr) criteria with the most 
recent preoperative result as baseline. AKI was defined as 
any of the following: SCr increase ≥ 0.3 mg/dL within 48 h 
or SCr increase ≥ 1.5 times baseline within 7 days of sur-
gery. Severe AKI (stage 2 and 3 AKI classification) refers 
to the condition of an increase in SCr ≥ 4.0 mg/dL or ≥ 2.0 
times baseline or the initiation of renal replacement ther-
apy (RRT).

Statistical analysis
During data preprocessing, the nonphysiologic vital val-
ues or outliers were checked and replaced by the true 
values from electronic medical records when it was mis-
recorded or changed to missing. For several variables 
with missing data (BMI, CCS angina class, COPD), we 
imputed the missing values by random forest - multiple 
imputation method in R using the ‘missForest’ package.

For all participants grouped by postoperative AKI or 
severe AKI, the continuous variables were presented as 
mean ± standard deviation (SD) and analyzed by unpaired 
t tests or expressed as median (interquartile range) and 
compared using the Mann-Whitney U test when they 
violated the normality assumption. The discrete variables 
were expressed as frequencies (%) and tested using Chi-
square tests.

Model development, validation and comparisons
For model development, the complete dataset was ran-
domly divided into a derivation set and a validation set 
based on a ratio of 4:1. The derivation set was used to 
train the model and the validation set was used to access 
the generalizability of the model.

To reduce redundant data dimensions, univariate anal-
yses were performed to select feature predictors. Only 
the candidate preoperative and intraoperative variables 
that were significantly associated with PO-AKI would be 
incorporated in the model training.

In the derivation dataset, we used traditional logis-
tic regression analysis and five popular supervised ML 
algorithms to train models, including decision tree (DT), 
random forest (RF), gradient boosting classifier (GBC), 
Gaussian Naive Bayes (GNB) and multilayer perceptron 
(MLP).



Page 4 of 10Jiang et al. BMC Nephrology          (2023) 24:326 

Furthermore, the predictive value of each algorithm 
in discriminating PO-AKI was systematically evaluated 
in the validation set by using sensitivity, specificity, area 
under the receiver operating characteristic curve (AUC), 
accuracy, Youden index (sensitivity plus specificity-1) and 
the 95% confidence interval (CI). Sensitivity measures 
the ability of a model to correctly identify positive cases 
out of all the actual positive cases. Specificity measures 
the ability of a model to correctly identify negative cases 
out of all the actual negative cases. AUC is a commonly 
used metric that summarizes the overall performance 
of a model to discriminate between positive and nega-
tive instances across various classification thresholds. 
Accuracy calculates the proportion of correctly classi-
fied instances over the total number of instances. Youden 
index is derived from sensitivity and specificity and pro-
vides a balance between these two metrics, allowing for 
the determination of an optimal classification threshold. 
The statistical significance of the difference among the 
AUCs was further examined using the method proposed 
by DeLong et al. (1988) using MedCalc® Statistical Soft-
ware version 20. This method is a widely used approach 
for comparing AUC values between two or more models. 
It is based on the nonparametric approach and uses the 
theory of generalized U-statistics.

Model interpretation using SHAP
Lastly, we focused on interpreting the output of the final 
ML models. SHAP (SHapley Additive exPlanations) is a 
unified approach [18] to explain the variable impact on 
the output of any model by assigning each feature con-
sistent and accurate attribution values for a particular 
prediction. The benefits of utilizing SHAP are as follows: 
(1) the collective SHAP values help to interpret and 
understand the model at a global level, (2) an observation 
gets its own set of SHAP values that explain the variable 
impact on individual predictions at a local level. We fur-
ther visualized the SHAP explanation by summary plot 
and force plot to understand how the models interpret 
the data and make predictions.

Statistical analyses were conducted with SAS ver-
sion 9.1 (SAS Institute Inc., Cary, North Carolina, USA). 
Development, validation and interpretation of the mod-
els were performed under Python Version 3.6 environ-
ment. All P values were two-sided with a significance 
level of 0.05.

Results
Comparison of characteristics and outcomes
A total of 2310 participants were included in the pres-
ent retrospective cohort study. Table  1 shows the com-
parison of characteristics and outcomes in patients with 
and without postoperative AKI or severe AKI. In the 
whole cohort of cardiac surgery, 1020 (44.2%) patients 

developed PO-AKI and 286 (12.4%) developed severe 
AKI (stage 2 and 3 AKI). Univariate analyses indicated 
that presentation of hyperlipidemia, cerebrovascular 
accident, congestive cardiac failure, CCS angina class 
II-IV, NYHA class III-IV, CABG + valve/other surgery, 
CPB, aortic cross-clamping, IABP usage, intraopera-
tive BPT, and longer assisted ventilation time were sig-
nificantly associated with increased risk of PO-AKI (all 
P < 0.05). Notably, we found that the levels of preop-
erative SCr in the patients without PO-AKI were sig-
nificantly higher than those of patients with PO-AKI 
(P < 0.001). Compared to the patients with PO-AKI, those 
without PO-AKI had higher percentages of preoperative 
medications use, such as intravenous nitroglycerin injec-
tion (54.1% vs. 43.3%; P < 0.001), β-blockers (50.1% vs. 
37.8%; P < 0.001), ACEi/ARB (17.8% vs. 10.4%; P < 0.001), 
lipid-lowering agents (41.1% vs. 21.0%; P < 0.001)). There 
was no statistical significance between AKI and no-
AKI groups regarding gender, age, BMI, smoker, diabe-
tes mellitus, hypertension, chronic renal failure, COPD, 
peripheral vascular disease, arrhythmia, previous MI and 
cardiac interventions.

Development, validation and comparison of models
Using the sixteen preoperative and intraoperative predic-
tors that were significantly associated with postoperative 
AKI, we developed five ML models and a conventional 
logistic regression model in the derivation set (n = 1848, 
80%) and validated the models in the validation set 
(n = 462, 20%) for prediction of postoperative AKI and 
severe AKI, respectively. There were no significant differ-
ences among patient characteristics, postoperative out-
come and complications between the derivation set and 
the validated set (Supplementary Table 1). Model perfor-
mance metrics in the validated set were demonstrated in 
Table 2. The ROC curves of prediction models were also 
illustrated in Fig. 1(a) for AKI prediction and Fig. 1(b) for 
severe AKI prediction. Comparisons of AUCs among dif-
ferent models are presented in Supplementary Table 2.

Among the five ML models, MLP and GNB, with simi-
lar AUCs (0.793, 95%CI: 0.735, 0.844 vs. 0.762, 95%CI: 
0.701, 0.815, Pdifference =0.179), performed best in pre-
dicting postoperative AKI. Compared to MLP, logistic 
regression had a higher AUC (0.812, 95%CI: 0.756, 0.860 
vs. 0.793, 95%CI: 0.735, 0.844, Pdifference =0.036), sensitiv-
ity (0.774, 95%CI: 0.719, 0.813 vs. 0.804, 95%CI: 0.749, 
0.843), accuracy (0.753, 95%CI: 0.719, 0.781 vs. 0.745, 
95%CI: 0.705, 0.778) and Youden index (0.513, 95%CI: 
0.451, 0.573 vs. 0.460, 95%CI: 0.391, 0.536).

For postoperative severe AKI prediction, in terms of 
AUC, GBC (0.86, 95%CI: 0.808, 0.902) performed sig-
nificantly better than the other four ML models, includ-
ing DT (0.749, 95%CI: 0.688, 0.803, Pdifference =0.011), 
RF (0.805, 95%CI: 0.748, 0.854, Pdifference =0.027), GNB 
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(0.734, 95%CI: 0.672, 0.790, Pdifference =0.004) and MLP 
(0.718, 95%CI: 0.655, 0.775, Pdifference <0.001). The AUC 
of GBC was larger than the AUC of conventional logis-
tic regression (0.86, 95%CI: 0.808, 0.902 vs. 0.803, 95%CI: 
0.746, 0.852) but no significant differences were found 
(Pdifference =0.173). As illustrated in Table 2, the sensitiv-
ity (0.333, 95%CI: 0.224, 0.431 vs. 0.148, 95%CI: 0.078, 
0.250), Youden index (0.304, 95%CI: 0.202, 0.424 vs. 
0.138, 95%CI: 0.065, 0.260) and accuracy (0.896, 95%CI: 
0.868, 0.917 vs. 0.892, 95%CI: 0.877, 0.905) of GBC 
seemed to be consistently greater than those of conven-
tional logistic regression.

Model interpretation
For AKI prediction, the feature importance matrix plot 
for the best-performing logistic regression is shown in 
Fig. 2 (a). The top five most important predictors based 
on the SHAP values were assisted ventilation time, CPB, 
lipid-lowering agents, last preoperative SCr, and hyper-
lipidemia. To summarize the effects of all the features on 
logistic regression output at a global level, we plotted the 
SHAP values of every feature for every participant (Fig. 3 
(a)). It revealed that CPB and longer assisted ventilation 
time increased the risk of AKI and vice versa for preoper-
ative lipid-lowering agents and higher preoperative SCr. 

Table 1 Characteristics of the patients with and without postoperative AKI/severe AKI
No AKI
(n = 1290, 55.8%)

AKI
(n = 1020, 44.2%)

P No severe AKI
(n = 2024, 87.6%)

Severe AKI
(n = 286, 12.4%)

P

Male 922 (71.5%) 736 (72.2%) 0.72 1482 (73.2%) 176 (61.5%) < 0.001
Age (years) 61.00 (54.00, 66.00) 61.00 (55.00, 66.00) 0.86 60.50 (54.00, 65.00) 63.00 (56.00, 68.00) < 0.001
BMI (kg/m2) 25.14 (23.14, 27.33) 25.64 (23.44, 27.68) 0.06 25.29 (23.23, 27.49) 25.68 (23.70, 27.68) 0.076
Smoker 540 (41.9%) 422 (41.4%) 0.81 854 (42.2%) 108 (37.8%) 0.15
Diabetes mellitus 348 (27.0%) 250 (24.5%) 0.18 528 (26.1%) 70 (24.5%) 0.56
Hypertension 648(50.2%) 546 (53.5%) 0.12 1048(51.8%) 146 (51.0%) 0.80
Hyperlipidemia 594 (46.0%) 536 (52.5%) 0.002 970 (47.9%) 160(55.9%) 0.011
Chronic renal failure 6 (0.5%) 10 (1.0%) 0.14 16 (0.8%) 0 (0.0%) 0.13
COPD 4 (0.3%) 2 (0.2%) 0.59 6 (0.3%) 0 (0.0%) 0.36
Peripheral vascular disease 8 (0.6%) 8 (0.8%) 0.64 16 (0.8%) 0 (0.0%) 0.13
Cerebrovascular accident 128 (9.9%) 144 (14.1%) 0.002 228 (11.3%) 44 (15.4%) 0.04
Congestive cardiac failure 68 (5.3%) 82 (8.0%) 0.01 128 (6.3%) 22 (7.7%) 0.38
CCS angina class II-IV 1112 (86.2%) 934 (91.6%) < 0.001 1776 (87.7%) 270 (94.4%) < 0.001
NYHA class III-IV 904 (70.1%) 838 (82.2%) < 0.001 1488 (73.5%) 254 (88.8%) < 0.001
Arrhythmia 70 (5.4%) 50(4.9%) 0.57 110 (5.4%) 10 (3.5%) 0.17
Previous MI 354 (27.4%) 322 (31.6%) 0.05 572 (28.3%) 104 (36.4%) 0.005
Previous PCI 46 (3.6%) 42 (4.1%) 0.49 80 (4.0%) 8 (2.8%) 0.34
Previous cardiac surgery 6 (0.5%) 4 (0.4%) 0.79 8 (0.4%) 2 (0.7%) 0.46
Intravenous nitroglycerin injection#1 698 (54.1%) 442 (43.3%) < 0.001 1036 (51.2%) 104 (36.4%) < 0.001
Catecholamine injection#2 20 (1.6%) 10 (1.0%) 0.24 24 (1.2%) 6 (2.1%) 0.20
β-blockers#1 646 (50.1%) 386 (37.8%) < 0.001 936 (46.2%) 96 (33.6%) < 0.001
ACEi/ARB#2 230 (17.8%) 106 (10.4%) < 0.001 308 (15.2%) 28 (9.8%) 0.015
Lipid-lowering agents#1 530 (41.1%) 214 (21.0%) < 0.001 700 (34.6%) 44 (15.4%) < 0.001
Last preoperative Scr (mg/dl) 0.78 (0.67, 0.91) 0.73 (0.58, 0.88) < 0.001 0.77 (0.66, 0.90) 0.65 (0.51, 0.82) < 0.001
Last preoperative LVEF (%) 59.00 (55.00, 62.00) 59.00 (55.00, 62.00) 0.087 59.00 (55.00, 62.00) 59.00 (54.00, 62.00) 0.002
Last preoperative LVEDD (mm) 50.00 (47.00, 55.00) 51.00 (48.00, 56.00) 0.099 51.00 (48.00, 55.00) 51.00 (48.00, 55.00) 0.39
Number of diseased coronary vessels 3.00 (3.00, 3.00) 3.00 (3.00, 3.00) 0.16 3.00 (3.00, 3.00) 3.00 (3.00, 3.00) 0.90
CABG + valve/other surgery 80 (6.2%) 100 (9.8%) 0.001 146 (7.2%) 34 (11.9%) 0.01
Elective surgery 1282 (99.4%) 1014 (99.4%) 0.82 2012 (99.4%) 284 (99.3%) 0.36
CPB 298 (23.1%) 422 (41.4%) < 0.001 594 (29.3%) 126 (44.1%) < 0.001
Aortic cross-clamping 226 (17.5%) 260 (25.5%) < 0.001 408 (20.2%) 78 (27.3%) 0.01
IABP 52 (4.0%) 100 (9.8%) < 0.001 100 (4.9%) 52 (18.2%) < 0.001
Intraoperative BPT 346 (26.8%) 392 (38.4%) < 0.001 612 (30.2%) 126 (44.1%) < 0.001
Postoperative BPT 1100 (85.3%) 868 (85.1%) 0.91 1732 (85.6%) 236 (82.5%) 0.17
Assisted ventilation time (hr) 18.50 (15.00, 24.00) 21.00 (16.00, 36.00) < 0.001 19.00 (15.50, 25.00) 21.50 (16.50, 49.50) < 0.001
#1 within 24 h before operation; #2 within 48 h before operation

Abbreviations: AKI, acute kidney injury; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CCS, Canadian Cardiovascular Society; NYHA, New York 
heart association; MI, myocardial infarction; PCI, previous percutaneous coronary intervention; ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin 
II receptor blocker; SCr, serum creatinine; LVEF, left ventricular ejection fractions; LVEDD, left ventricular end-diastolic diameter; CABG, coronary artery bypass 
grafting; CPB, cardiopulmonary bypass; IABP, intra-aortic balloon pump; BPT, blood product transfusion
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Table 2 Performance metrics of the models for prediction of postoperative AKI/ Severe AKI in the deviation set
Outcome Model Sensitivity (95%CI) Specificity (95%CI) AUC# (95%CI) Acurracy (95%CI) Youden index 

(95%CI)
AKI LR 0.774(0.719,0.813) 0.739(0.698,0.784) 0.812(0.756,0.860) 0.753(0.719,0.781) 0.513(0.451,0.573)

DT 0.473(0.420,0.537) 0.594(0.544,0.635) 0.534(0.467,0.599) 0.545(0.516,0.570) 0.067(-0.010,0.194)
RF 0.602(0.552,0.657) 0.725(0.673,0.777) 0.712(0.649,0.770) 0.675(0.626,0.709) 0.327(0.238,0.379)
GBC 0.581(0.525,0.629) 0.775(0.725,0.814) 0.732(0.670,0.788) 0.697(0.672,0.742) 0.356(0.294,0.436)
GNB 0.452(0.358,0.507) 0.826(0.781,0.859) 0.762(0.701,0.815) 0.675(0.644,0.702) 0.278(0.205,0.347)
MLP 0.656(0.575,0.729) 0.804(0.749,0.843) 0.793(0.735,0.844) 0.745(0.705,0.778) 0.460(0.391,0.536)

Severe AKI LR 0.148(0.078,0.250) 0.990(0.982,0.997) 0.803(0.746,0.852) 0.892(0.877,0.905) 0.138(0.065,0.260)
DT 0.593(0.483,0.707) 0.907(0.882,0.930) 0.749(0.688,0.803) 0.870(0.841,0.894) 0.500(0.393,0.596)
RF 0.296(0.181,0.388) 0.975(0.964,0.985) 0.805(0.748,0.854) 0.896(0.875,0.912) 0.271(0.147,0.348)
GBC 0.333(0.224,0.431) 0.971(0.955,0.983) 0.86(0.808,0.902) 0.896(0.868,0.917) 0.304(0.202,0.424)
GNB 0.407(0.284,0.517) 0.922(0.894,0.942) 0.734(0.672,0.790) 0.861(0.835,0.886) 0.329(0.219,0.428)
MLP 0.074(0.009,0.138) 1.000(1.000,1.000) 0.718(0.655,0.775) 0.892(0.888,0.898) 0.074(0.026,0.147)

Abbreviations: AKI, acute kidney injury; AUC, area under receiver operating characteristic curves; CI, confidence interval; LR, Logistic Regression; DT, Decision Tree; 
RF, Random Forest; GBC, Gradient Boosting Classifier; GNB, Gaussian Naive Bayes; MLP, Multilayer Perceptron;

Fig. 2 Feature importance matrix plot based on SHAP for (a) postoperative AKI prediction using logistic regression and (b) postoperative severe AKI 
prediction using gradient boosting model. AKI, acute kidney injury; CCS, Canadian Cardiovascular Society; NYHA, New York heart association; CA, cerebro-
vascular accident; ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; ACC, Aortic cross-clamping; SCr, serum creatinine; 
CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; IABP, intra-aortic balloon pump; BPT, blood product transfusion

 

Fig. 1 Model performance illustrated by receiver operating characteristic curves for predicting (a) postoperative AKI and (b) postoperative severe AKI. 
AKI, acute kidney injury; AUC, area under receiver operating characteristic curves; CI, confidence interval
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At a local level, we could get a set of SHAP values for spe-
cific participant’s feature values and visualize the impact 
of each feature on the output by force plot (Supplemen-
tary Fig. 1(a)). The color of the arrows shows how the fea-
ture impacts the model: a red arrow increases the model 
output predicted value in the positive direction while 
a blue arrow decreases it in the negative direction. The 
size of the color arrows for each feature value represents 
the impact magnitude of the SHAP value. The base value 
refers to the mean probability that would be predicted if 
we do not know any features for the current output. As 
shown in Supplementary Fig.  1(a), the base value here 
was 0.49 and the output predicted value was 0.61, lipid-
lowering agents = 0 with red arrow and ACC = 1 with the 
blue arrow have similar impact magnitudes but in oppo-
site directions. Red feature values contribute to postop-
erative AKI prediction, while blue ones push towards no 
AKI development.

Similarly, we combined the optimal GBC model for 
severe AKI prediction with SHAP analysis and pre-
sented the importance matrix plot in Fig. 2 (b). To get an 
overview of which features contribute most to the GBC 
model, we used the SHAP summary plot (Fig. 3 (b)). Of 
the top five most important variables, there were two 
risk factors (longer assisted ventilation time and hyper-
lipidemia) and three protective factors (higher last pre-
operative SCr, preoperative lipid-lowering agents and 
intravenous nitroglycerin intake). SHAP force plot (Sup-
plementary Fig.  1(b)) showed the impact direction and 
magnitude of each feature value on the development of 
postoperative severe AKI by taking a specific patient case 
as an example. In this case, the blue-colored explanatory 
variable values (last preoperative SCr (mg/dl) = 0.49, no 
preoperative intravenous nitroglycerin injection, no pre-
operative intake of lipid-lowering agents, NYHA III-IV, 
no preoperative intake of β-blockers, hyperlipidemia) 
had a positive contribution towards severe AKI devel-
opment and outweighed the negative impact of other 

blue-colored variable values, such as no CPB, assisted 
ventilation time (hr) = 45 and so on.

Discussions
We conducted a retrospective study to investigate the 
incidence and risk factors of patients developing PO-
AKI and compare the performance of machine learning 
algorithms and logistic regression in predicting PO-AKI 
following cardiac surgery. Contrary to our expectations, 
traditional logistic regression outperformed all five other 
machine learning models in discriminating postopera-
tive AKI. However, Gradient Boosting Classifier showed 
higher AUC values than traditional logistic regression 
when predicting postoperative severe AKI, but no sig-
nificant difference was found. Taking into account sensi-
tivity, accuracy, and Youden index, GBC appeared to be 
superior to traditional logistic regression in predicting 
postoperative severe AKI. The study yielded moderate 
to good predictive values for both postoperative PO-AKI 
and severe AKI. Furthermore, the models identified vari-
ous risk factors, including lower preoperative SCr level, 
longer assisted ventilation time, cardiopulmonary bypass 
and hyperlipidemia, and discovered main protective 
factors, such as preoperative lipid-lowering agents and 
intravenous nitroglycerin intake, which could potentially 
inform clinical interventions.

The performance of risk prediction model was typi-
cally determined by various factors, such as the quality 
of the data, sample size, predictor parameters, algorithms 
and so on. Lee et al. [9] reported that XGboost achieved 
the best performance (AUC: 0.78 (95%CI 0.75–0.80)) 
using 39 variables to predict postoperative AKI of all 
stages compared to traditional logistic regression (AUC: 
0.69 (95%CI 0.66–0.72)) and other ML models. On the 
contrary, based on the same AKI definition and similar 
incidence of postoperative AKI, we used far fewer pre-
dictors (16 variables) and found that the performance 
of traditional logistic regression (AUC: 0.812(95%CI 

Fig. 3 SHAP summary plot for (a) postoperative AKI prediction using logistic regression and (b) postoperative severe AKI prediction using gradient 
boosting model. AKI, acute kidney injury; CCS, Canadian Cardiovascular Society; NYHA, New York heart association; CA, cerebrovascular accident; ACEi, 
angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; ACC, Aortic cross-clamping; SCr, serum creatinine; CABG, coronary artery 
bypass grafting; CPB, cardiopulmonary bypass; IABP, intra-aortic balloon pump; BPT, blood product transfusion
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0.756–0.860)) was significantly superior to that of other 
five ML models in predicting PO-AKI of all stages. Nota-
bly, we have also attempted to include as many variables 
as possible in the models before formal analyses. How-
ever, we found that the expansion of input features did 
not imply great improvement of predictive ability, prob-
ably due to high correlation between the features or data 
noise. Thottakkara et al. [19] found that reducing the 
dimensionality of the predictors with LASSO had mini-
mal effect on the performance of models, while feature 
extraction using principal component analysis improved 
predictive performance. We were convinced that models 
with redundant data and elaborate risk calculation would 
add extra burden and make it difficult to deploy in real 
clinical conditions. So we only included the variables 
significantly associated with postoperative AKI, which 
may have the risk of omitting some potentially important 
variables but aid in decreasing overfitting and making the 
model easier interpretable. Additionally, more advanced 
and complex algorithms are not certainly synonymous 
with substantial performance improvement. For example, 
Tomašev et al. [20] once utilized a broad range of alterna-
tive RNN architectures (specifically, the long short-term 
memory, update gate RNN and intersection RNN, the 
neural Turing machine, memory-augmented neural net-
work, simple recurrent units, gated recurrent units, the 
Differentiable Neural Computer and the relational mem-
ory core) to create a continuous prediction model of AKI. 
These alternatives did not show significantly incremental 
performance than the simple recurrent unit architecture.

Notably, the performance of risk prediction models 
should be assessed comprehensively and compared based 
on scientific statistical tests. To identify more positive 
cases and reduce false negative cases, sensitivity is par-
ticularly emphasized over specificity in clinical screening 
and risk assessment. Excellent discrimination measured 
by AUC does not necessarily mean good performance in 
sensitivity. However, some previous studies [3, 8, 9, 21] 
did not report such more comprehensive metrics for 
model assessment, which may overestimate their models’ 
reliability and practical values. Additionally, we could not 
rule out the possibility of publication bias. Studies that 
demonstrate better performance with ML algorithms 
may be more likely to be published compared to those 
showing insignificant results. This can impact the overall 
body of evidence by potentially skewing the performance 
of ML models.

Even if logistic regression outperformed the ML mod-
els in discrimination of postoperative AKI, the limita-
tions of logistic regression should be addressed as well. 
Logistic regression assumes a linear relationship between 
the independent variables and the logit function. It 
may not capture non-linear relationships and complex 
interactions among variables. Logistic regression has 

limitations in handling high-dimensional data, missing 
data and unbalanced datasets. Logistic regression relies 
on manual or statistical methods for feature selection, 
which requires prior knowledge or assumptions about 
the relevant variables. Anyway, we could not underesti-
mate the strengths of ML algorithms. Bihorac et al. [22] 
used an automated generalized additive model (GAM) 
with logistic link function to assess the risk of death and 
eight postoperative complications including AKI and 
reported an AUC of 0.88 (0.87–0.89) and a sensitivity of 
0.80 (0.78, 0.82) for AKI after index surgery. The advan-
tages of this automated ML system included automatic 
covariate selection, universal applicability to any type 
of surgery, exportability to other EHR systems, and the 
ability to handle high-dimensional datasets with multi-
ple different data types (such as interrelated, correlated, 
semistructured or unstructured data, missing or sparse 
data). Rank et al. [23] built a recurrent neural network 
(RNN) based on 96 routinely collected clinical param-
eters for real-time prediction of AKI within 8 future time 
horizons (6-h, 12-h, 18-h, 24-h, 36-h, 48-h, 60-h and 72-h 
ahead) after cardiothoracic surgery. The deep-learning 
model yielded a significantly higher AUC and sensitiv-
ity than the experienced clinicians. The RNN model 
could potentially be integrated into an EHR for real-time 
patient monitoring and early detection of postoperative 
AKI. A shift to personalized predictive medicine, where 
large amounts of multiple different types of features are 
integrated, suggests that computational methods like ML 
would become increasingly popular.

While model performance is crucial, the interpretabil-
ity and clinical implications of the model also play signifi-
cant roles. As revealed by SHAP analysis, LR and GBC 
models have identified lower preoperative SCr level as an 
important contributor to the development of PO-AKI, 
particularly in cases of postoperative severe AKI. Intrigu-
ingly, patients who experienced severe AKI exhibited 
significantly lower preoperative SCr level (0.65 (95% CI 
0.51, 0.82) mg/dl vs. 0.77 (95% CI 0.66, 0.90) mg/dl) and 
higher postoperative SCr level (1.57 (95% CI 1.24, 2.31) 
mg/dl vs. 0.98 (95% CI 0.82, 1.16) mg/dl) than patients 
without severe AKI. Conversely, Teresa et al. [24] and 
Guan et al. [25] found that patients with AKI follow-
ing cardiac surgery had higher baseline SCr level. Renal 
functional reserve (RFR) may help explain the opposite 
phenomenon we observed. RFR is defined by the differ-
ence between maximal functional capacity and baseline 
function and represents the capacity of the kidneys to 
increase GFR in response to stimuli (e.g., protein load 
or during pregnancy) [26, 27]. Those who appear to have 
sustained no permanent loss of kidney function (nor-
mal serum creatinine), may still lose RFR. In the present 
study, patients with lower baseline SCr level may have 
higher baseline function and diminished RFR, which 
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makes the renal response to cardiac surgery less pow-
erful and induced kidney injury. Ronco et al. [28] have 
demonstrated that preoperative RFR, measured with a 
protocolized protein load of 1.2 g/kg, was highly predic-
tive of cardiac surgery associated-AKI with an AUC of 
0.83 (95% CI 0.70–0.96) and patients with an increased 
renal reserve were less likely to develop postoperative 
AKI. Husain-Syed et al. [29] noted that patients with 
postoperative AKI have a persistent decrease in RFR at 
3 months after cardiac surgery despite normalization of 
serum creatinine and patients with severe AKI exhibited 
higher decreases in RFR. These remind us that preopera-
tive detection of baseline SCr is not enough and highlight 
the importance of assessing renal functional reserve as 
a highly potential predictor of postoperative AKI before 
cardiac surgery. The patients with normal baseline SCr 
but occult impaired renal reserve should be timely identi-
fied and deserve close clinical attention.

The models also established hyperlipidemia and pre-
operative lipid-lowering agents use as among the top five 
important predictors for postoperative AKI and severe 
AKI as well. In this study, statins accounted for over 97% 
of the lipid-lowering agents used preoperatively. It is 
speculated that preoperative lipid-lowering agents (e.g., 
statins) use may be protective against AKI by inhibiting 
post-operative inflammatory processes. Several random-
ized controlled trials investigating inflammatory mark-
ers and perioperative statin usage in patients undergoing 
cardiac surgery have demonstrated a reduction in inflam-
matory cytokines [30]. Meta-analyses of observational 
studies have revealed that preoperative statin therapy 
significantly reduced the incidence of postoperative renal 
dysfunction and the requirement for renal replacement 
therapy in patients undergoing cardiac surgery [31, 32]. 
Similarly, other modifiable factors such as assisted ven-
tilation time, cardiopulmonary bypass and intravenous 
nitroglycerin intake were also found to be key predic-
tors of AKI risk, highlighting their clinical implications in 
predicting AKI and guiding clinical intervention.

Some advantages of the study could be acknowledged. 
We comprehensively developed, validated and compared 
the traditional logistic regression and the five most popu-
lar ML models in the prediction of postoperative AKI and 
severe AKI as well. More variables on preoperative medi-
cine intakes and intraoperative procedures were included 
as modifiable predictors, which provide potential targets 
for prevention and intervention of high-risk population. 
Furthermore, we made intuitive explanations of the mod-
els using SHAP at the global and local levels, which shed 
light on the black box of ML and aid in understanding 
how and how much each predictor contributes. To deter-
mine whether sufficient power was gained to ensure the 
reliability of our results, we implemented a post hoc sam-
ple size calculation using the method proposed by Riley 

et al. [33] via the pmsampsize package in R. The number 
of predictor parameters was 16, the R2 was 0.11, and the 
overall AKI incidence was 44.2%. Finally, the minimum 
sample size with 33.92 events per predictor required for 
model development based on the inputs is 1228. The 
actual sample of 1848 patients for model development 
likely has sufficient power to draw conclusions.

Limitation
However, the study also presented several limitations. 
First, the diagnosis of AKI was based on the modified 
KDIGO definition without incorporating urine output 
criteria. Because the collection and measurement of 
urine are sometimes incomplete, inaccurate and unreli-
able. In addition to the impact of renal function, urine 
output varies depending on the use of diuretic or fluid 
treatment regimens. Second, due to the unavailability of 
the complete time-series data, the study could not make 
real-time risk prediction of AKI. Future enhancement 
would include integrating additional perioperative time-
series data into the prediction models. Third, the models 
needed to be further externally validated. Factors such as 
differences in demographic characteristics, comorbidi-
ties, surgical profiles, management protocols, and peri-
operative care practices may influence the performance 
of the models. Moreover, the impact of potential con-
founding factors, such as variations in baseline kidney 
function and medication regimens, should also be care-
fully considered when applying these models in differ-
ent populations or settings. Therefore, rigorous external 
validation studies are necessary to verify the performance 
and establish the clinical utility of these prediction mod-
els in diverse patient populations and healthcare settings.

Conclusions
The study did not provide consistent evidence support-
ing the hypothesis that machine learning algorithms 
could significantly enhance the predictive performance 
of postoperative AKI and severe AKI after cardiac sur-
gery compared to conventional logistic regression. Logis-
tic regression and the GBC algorithm showed superior 
performance and exhibited moderate to good predictive 
ability for the risk of PO-AKI and severe AKI, respec-
tively. We interpreted the models at the population and 
individual level, which gained insight into why those pre-
dictions were made and offered evidence for individual 
prevention and treatment.
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