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Introduction
The use of animal models in disease pathogenesis 
research provides numerous benefits. The C57BL/6 
mouse strain, which exhibits inbreeding, has been exten-
sively used as a foundational strain for the development 
of genetic animal models. Despite their high reproduc-
tive capacity, long lifespans, and low tumor susceptibil-
ity, these mice demonstrate a notable resistance to the 
progression of renal damage in experimental models of 
kidney disorders. To overcome this obstacle, research-
ers have used multiple approaches to enhance the suc-
cessful modelling rate, hence improving the investigation 
of disease pathogenesis [1, 2]. In general, the evaluation 
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Abstract
C57BL/6 mice are frequently utilized as murine models with the desired genetic background for altertion in 
multiple research contexts. So far, there is still a lack of comprehensive kidney morphology and single-cell 
transcriptome atlas at all stages of growth of C57BL/6 mice. To provide an interactive set of reference standards 
for the scientific community, we performed the current study to investigate the kidney’s development throughout 
the capillary-loop stage until senescence. Eight groups, with five to six mice each, represented embryonic stage 
(embryos 18.5 days), suckling period (1 day after birth), juvenile stage (1 month old), adulthood (containing 
3 months old, 6 months old and 10 months old), reproductive senescence stage (20 months old), and post-
senescence stage (30 months old), respectively. With age, the thickness of the glomerular basement membrane 
(GBM) was increased. Notably, GBM knobs appeared at three months and became frequent with age. Using 
single-cell transcriptome data, we evaluated how various biological process appear in particular cell types and 
investigated the potential mechanism of formation of GBM konbs. In conclusion, having access to detailed 
kidney morphology and single-cell transcriptome maps from C57BL/6 mice at various developmental stages of 
C57BL/6 mice would be a novel and major resource for biological research and testing of prospective therapeutic 
approaches.
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process involves the examination of the morphological 
phenotype and histopathological elements of the kidney. 
Yet it is essential to establish the assessment criteria in 
animal studies by assessing the normal morphology and 
single-cell transcriptome atlas under physiological condi-
tions. To this end, it is of great need to create compre-
hensive atlas of kidney histopathology at various growth 
periods of C57BL/6 mice as a valuable reference for 
researchers to obtain wider knowledge about this subject.

Single-cell sequencing (scRNA-seq) technology has 
contributed to our knowledge of the disease via a tran-
scriptomic approach. The construction of a transcrip-
tome map of human kidney cells would facilitate the 
investigation of renal cell biology and provide insight of 
the intricate connections between cell types and diseases 
[3]. In the past few years, numerous studies of research 
have provided insight into novel genes and pathways par-
ticipating in the pathogenesis and progression of renal 
disorders [4–6]. Profiling different glomerular cells has 
been characterized to offer individual datasets for strati-
fying disease stages and dissecting glomerular function at 
the single-cell level [7, 8]. In streptozotocin-induced type 
1 diabetic mouse models, the mRNA profile of glomeru-
lar cells has been evaluated to indicate genes involved in 
the podocyte injury [9]. Profiling of various immune cells 
revealed the possible role of different subtypes of macro-
phages in different stages of diabetic nephropathy using 
scRNA-seq technology [10]. The heterogeneity of endo-
thelial cells (ECs) across and within tissues in C57BL/6 
mice has also been inventoried using the scRNA-seq 
technology [11]. Nevertheless, single-cell sequencing 
enables the identification of cellular function in a detailed 
manner.

To establish a thorough atlas of kidney histopathology 
and single-cell transcriptome analysis in C57BL/6 mice, 
this work was set up to investigate the kidney from the 
capillary-loop stage of development to senescence at 30 
months of age.

Materials and methods
Ethics statement
The research procedure follows the principles outlined 
in the Care and Use of Laboratory Animals published by 
the US National Institutes of Health (NIH Publication 
No. 85 − 23, modified 1996). Additionally, it has received 
approval from the Animal Ethics Committee at Guang-
dong Provincial People’s Hospital in Guangzhou, China.

Animals
Eight groups of C57BL/6 mice, each with five to six ani-
mals (male and female are evenly proportioned), were 
assessed at different stages: embryo (18.5 days), new-
born (1  day), adolescent (1 month), young (3 months), 

adulthood (6 months), middle-aged (10 months), old (20 
months), and senescent (30 months) [12].

Blood and urine chemistry
Blood samples were obtained at each stage using the 
retro-orbital method under isoflurane anesthesia. Addi-
tionally, body weight (BW) and kidney weight (KW) was 
measured and documented. Urine sample was collected 
using the reflex urination strategy at 9:00–10:00 AM. 
Blood glucose, serum blood urea nitrogen (BUN), and 
serum and urine creatinine levels were measured using 
a Beckman Coulter AU480 Chemistry Analyzer (Beck-
man). The evaluation of urine albumin was conducted 
using a mouse-specific albumin ELISA kit (E99-134, 
Bethyl Laboratories, Montgomery, TX). The results were 
reported as the urine albumin to creatinine ratio (UACR). 
Every experiment was carried out three times.

Tissue collection and animal euthanasia
Pentobarbital sodium (P3761, 30 mg/kg, Sigma-Aldrich, 
St. Louis, MO) was injected intraperitoneally into eight 
groups of mice to anesthetize them. Their body weight 
was then measured. The left kidneys were infused with 
0.1  M PBS (pH = 7.4) at 80 to 100 mmHg for two min-
utes through the abdominal artery to remove circulating 
blood. Kidney weight (KW) was measured as the left kid-
neys were quickly removed.

Histology analysis
Tissue slices were fixed in 10% formalin for 24 h, rinsed 
in buffer, dehydrated, and embedded in paraffin for light 
microscopy and histological examination. 2  μm thick 
paraffin sections were cut, stained with hematoxylin and 
eosin (H&E) for examination of cell structure, periodic 
acid-Shiff (PAS) and periodic acid-silver methenamine 
(PASM) to detect alterations in basement membrane 
architecture and glycogen deposition. Masson’s tri-
chrome staining (MTS) and Picric acid-Sirius red stain 
were used to demonstrate the deposition of collagen 
matrix. At least 20 randomly selected kidney sections 
from each mouse were evaluated for structural altera-
tions. Two masked independent investigators analyzed 
twenty glomeruli in each of the twenty fields per section, 
using a 100 objective oil immersion lens.

Transmission electron microscopy
Several 1-mm cubes were cut from the cortex of left kid-
neys, fixed in 2.5% glutaraldehyde for no less than four 
hours, rinsed with cacodylate buffer, postfixed in 1% 
osmium tetroxide, and block-stained in uranyl acetate 
before being embedded in Poly/Bed812 resin (Poly-
sciences, Inc., Warrington, PA). Ultrathin sections were 
procured from a minimum of three glomeruli that were 
randomly chosen from each animal. These sections were 
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then examined by staining using uranyl acetate and lead 
citrate. Digital micrographs of the glomeruli from each 
group of mice were captured using a Hitachi 7700 trans-
mission electron microscope (Tokyo) at magnifications of 
2000 and 6000.

Morphometric analysis of the kidney
On PAS-stained kidney tissue sections from 30 glomeruli 
from each group of mice, the degree of mesangial expan-
sion was assessed to determine the degree of glomeru-
lar injury. Assessment of the mesangial and glomerular 
cross-sectional areas was performed using Image Pro 
Plus software (Media Cybernetics, Bethesda, MD) [13]. 
Evaluation of GBM thickness and podocyte foot pro-
cess width were performed on five glomeruli with elec-
tron microscope [14, 15]. Using an automated analyzer 
in the transmission electron microscope, the thickness 
of the GBM was measured (Hitachi 7700, Hitachi High 
Technologies Corporation, Japan). By calculating the 
proportion of the effaced foot process per length of the 
glomerular basement membrane, podocyte foot process 
effacement was determined. In the analysis, the mean 
value was noted and used.

Single cell separation
Tissues were washed three times with PBS, cut into 
blocks of 2  mm and placed on DMEM-1640 medium 
(Gibco, Gaithersburg MD, USA). Using buffer contain-
ing collagenase IV (1  mg/ml; Thermo Fisher), pronase 
E (1  mg/ml), and DNase I (50 U/ml), the tissues were 
digested at 37 °C for 30 min. Cells were filtered through 
a 70 μm cell strainer and centrifuged at 400×g for 5 min. 
Take a small amount of single-cell suspension, add 0.4% 
trypan blue staining solution of the same volume, count 
the cells with Countess II Automated Cell Counter, and 
adjust the concentration of living cells to the ideal range 
(1000 to 2000 cells/µl).

Library construction and scRNA-seq
The gel beads containing barcode information combine 
with a mixture of cells and enzymes,then enter the res-
ervoir to be separated by oil to form GEMs (GelBeads-
In-Emulsions). After that, the gel beads dissolved and 
released the capture sequence containing the Barcode 
sequence, reverse transcribed the cDNA fragment, and 
labeled the sample. Break up the gel beads and oil drop-
lets then use cDNA as a template for PCR amplifica-
tion. All the products of GEMs are mixed to construct 
a standard sequencing library. The cDNA was cut into 
200 ∼ 300  bp fragments, then the second-generation 
sequencing library was constructed. Finally, the DNA 
library was amplified by PCR. The high-throughput 
sequencing of the library was carried out by using the 
PE150 sequencing mode of the Illumina sequencing 

platform. Quality control of sequencing was performed 
using cellranger.

Bioinformatics analysis
The expression matrix was transferred to Scanpy for sub-
sequent analysis, and a set of cells were clustered accord-
ing to both cell types and cell subgroups by singleR and 
Seurat. Gene differential expression analysis was per-
formed separately for different classes of cell populations 
using a rank sum test to screen subgroups for up-reg-
ulated expression genes. Gene Ontology (GO; http://
geneontology.org/) and Reactome pathway enrichment 
analyses were used to perform functional enrichment 
analyses using Homo sapiens as the genetic model.

Immunofluorescence
Immunofluorescence microscopy was performed on 
snap-frozen kidney tissues to rule out immunological 
complex diseases involving IgG, C3, IgA, IgM, and C1q. 
Kidney tissues embedded in paraffin and formalin-fixed 
were used to detect the expression profile of specific kid-
ney-related markers. Mouse monoclonal synaptopodin 
(1:200) (sc-515842, Santa Cruz Biotechnology, Dallas, 
TX, USA) and rabbit polyclonal Wilm’s Tumor 1 (WT1) 
antibody (1:100) (ab89901, Abcam, Cambridge, MA, 
USA) were the primary antibodies utilized. The FV1000-
IX81 confocal laser scanning microscope (Olympus, 
Germany) was used to capture the images. Primary anti-
bodies were replaced with PBS as the negative control.

Statistical analysis
The previously data are shown as mean ± SD. One-Way 
ANOVA and Two-Way ANOVA followed by the Tukey’s 
post hoc test was utilized to determine the statistical sig-
nificance between groups. All statistical analyses were 
carried out using version 25.0 of SPSS and GraphPad 
Prism 10.0. A significance level of 0.05 was established.

Results
Biological parameters at various stages
We divided the mice into eight groups, with five to six 
mice each, and each group respectively represented 
embryonic stage (embryos 18.5 days), suckling period 
(1  day after birth), juvenile stage (1 month old), adult-
hood (containing 3 months old, 6 months old and 10 
months old), reproductive senescence stage (20 months 
old), and post-senescence stage (30 months old) of mice 
(Fig.  1a). Significantly, the kidney volume of senescent 
mice was increased compared with maturing and middle-
aged mice (Fig.  1b). Blood and urine samples were col-
lected at the time of euthanasia. Biological parameters, 
including the serum creatinine (Scr), BUN, UACR were 
analyzed (Table 1). There were no significant changes in 
the level of Scr and BUN in different groups. Compared 
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with the adulthood, the level of UACR had a slight 
increase in the senescent mice (Fig. 1c-e).

Kidney histopathology at various stages
Compared with maturing and middle-aged mice, both 
male and female, there was a slight increase in the glo-
merular size and mesangial width with age as shown by 
the silver and PAS staining. (Figure 2a and d). No signifi-
cant fibrosis was present in maturing and middle-aged 
mice, though total fibrotic area of the kidneys showed a 
mild increase from 20 month of age in male (Fig. 2e and 
g).

To clarify whether immune reactions were present in 
the developing C57BL/6 mice, we examined the deposi-
tion of immunoglobulin (Ig), IgG, C3, IgA, IgM, and C1q 
in glomeruli of all groups. The results demonstrate that 
by 6 months, deposition of IgG and IgM was present in 
glomerular mesangial areas and segmental capillary walls 
(Fig. 2f ).

Podocyte number was stable from new-born till the 
age of 10 months. For female, by the age of 20 months, 
the number of WT1 positive podocytes was reduced till 
the age of 30 months, while this change does not occur 
until the age of 30 months in male mice (Fig.  3a and 

Table 1 Blood biochemical indicators of mice in the indicated groups
1 m 3 m 6 m 10 m 20 m 30 m

LDL(mmol/L) 0.47±0.11 0.44±0.15 0.46±0.09 0.44±0.07 0.44±0.05 0.48±0.20
HDL(mmol/L) 1.05±0.15 1.20±0.26 1.28±0.19 1.08±0.08 0.90±0.21 0.92±0.36
TG(mmol/L) 0.43±0.12 0.55±0.23 0.57±0.28 0.41±0.19 0.44±0.12 1.05±0.67
CHOL(mmol/L) 2.53±0.47 2.70±0.57 2.84±0.21 2.52±0.16 2.07±0.46 2.05±0.60
ALT(U/L) 48.86±15.48 62.75±13.84 60.85±19.57 37.95±4.42 88.08±21.06 46.93±13.54
AST(U/L) 207.76±106.68 155.62±30.84 165.05±41.54 140.81±40.42 260.93±135.47 164.48±75.41
LDL, low density lipoprotein; HDL, high density lipoprotein; TG, total cholesterol; CHOL, cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase. 
6 mice per group. Data are expressed as the mean ± SD.

Fig. 1 Biological parameters at various developmental stages of C57BL/6 mice. (a) The different life stages corresponding to the groups of mice stud-
ied. (b) The basic conditions including body weight (g), kidney weight (g), and kidney-to-body weight ratio (‰) of mice. (c-e) Serum creatinine (SCr), 
blood urea nitrogen (BUN) and urine albumin creatine ratio (UACR) levels in the eight groups. Data are expressed as the mean ± SD. N = 6 for each group. 
*P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 2 Renal histopathology at various developmental stages of C57BL/6 mice. (a) The four basic stains (HE, PAS, PASM, Masson) of kidney pathology in 
the indicated mouse groups. Scale bars, 25 μm (b, c) Glomerular tuft area and glomerular tuft volume of each group. n = 3 mice per group*7–9 glomerular 
per mice. (d) Quantification of the mesangial matrix fraction. n = 3 mice per group*4–6 glomerular per mice. (e) Quantification of the fibrosis area. n =  3 
mice per group*4–6 glomerular per mice. (f) Immunofluorescence staining for IgG and IgM in kidney sections from different life stages of mice. Scale bar 
= 50 μm. Typical images are shown. Calculation of glomerular area and volume and quantification of mesangial expansion was based on glomeruli cut 
at the vascular pole per mouse in each group. Data are expressed as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. (g) Representative Masson images
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Fig. 3 Podocyte characteristics and GBM changes with age in mice. (a) WT1 and synapotopodin in kidney sections from the indicated mouse groups. 
Scale bar = 20 μm. (b) Display of knobs-like structure under light microscope (PAS, PASM staining) and electron microscope. Scale bar of light micro-
scope = 10 μm. Scale bar of electron microscope = 10 μm. (c) Quantification of WT1 + podocytes per glomerular cross-section. (d) Quantification of foot 
process width. (e) Quantification of GBM thickness. (f) Quantitative statistics and analysis of knobs-like structures in each group. (g) Correlation analysis 
between number of knobs-like structures and Scr. (h) Correlation analysis between number of knobs-like structures and Bun. (i) Correlation analysis be-
tween number of knobs-like structures and UACR. 3 mice per group. Data are expressed as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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c). Significant GBM alterations were observed as pre-
sented by the increased thickness and knob-like struc-
tures beginning from 3 months of age till senescence at 
30 months as detected by the silver staining, PAS stain-
ing and electron microscopy (Fig.  3b and d). With age, 
the number of knobs per 10 glomerular capillary walls 
(GCW) was significantly increased. Compared with the 
maturing and middle-aged mice, the thickness of GBM 
and the foot process width (FPW) was increased with age 
and the difference reached statistical significance at 6 and 
10 months of age (Fig. 3d-f ). In addition, the number of 
knobs was positively correlated with both UACR and Scr. 
(Fig. 3g-i)

10X Genomics single-cell transcriptome analysis of the 
kidney at various stages
A total of 10, 895 and 4408 cells were isolated from whole 
kidney cell suspensions from the young and senescent 
mice, respectively. 10X genomics single-cell sequencing 
was conducted and stringent quality controls were per-
formed using cellranger [12]. Clustering analysis using 
soft k-means clustering revealed 14 cell clusters and 7 
different cell types. These included intrinsic glomeru-
lar cells and tubular cell types (Fig.  4a). Of note, proxi-
mal tubular epithelial cells (PTCs) had a few numbers of 
differentially expressed genes (DEGs) (Fig.  4b). KEGG 
enrichment for biologic processes (Fig.  4c) showed that 
various processes, including and focal adhesion, meta-
bolic pathways, and signaling pathways (mTOR signaling) 
were enriched in cluster of glomerular cells and tubular 
cells. Furthermore, GO enrichment indicated that there 
was enrichment in processes involved in mitochondrion 
and metabolism (Fig.  4d). By 30 months, compared 
with maturing mice, typical characteristics of single-
cell transcriptome analyses were shown as presented by 
differential expression of genes that encode the GBM’s 
components (Lamc1, Lama3, Agrn) in clusters of ECs 
(Fig.  4e-g). Further, we also explored whether aging-
related phenotypes in the mouse kidney could be inferred 
from the expression pattern of human genes, whose loss 
of function results in kidney diseases. Of significance, 
we found that the mouse homologs of epithelial mem-
brane protein 3 (EMP3), which have been associated with 
monogenic inheritance of proteinuria in humans were 
obviously upregulated in ECs. Furthermore, genes that 
have been implicated in chronic kidney disease (CKD), 
such as Slc6a6 were up-regulated in ECs, and Umod, 
Cacna1d, Ddx1 were specifically up-regulated in PTs 
(Fig. 4h).

Discussion
This study reports a comprehensive atlas of the renal 
histopathology and single-cell transcriptome analysis at 
various developmental stages in the inbred mouse strain 

C57BL/6. Main findings are as follows: (1) compared with 
the maturing and middle-aged mice, the level of UACR 
had a slight increase in the senescent mice; (2) mesangial 
width gradually increases from 20 months of age; 2) with 
age, there were immune reactions involving IgG and IgM 
depositions in glomeruli of C57BL/6 mice by 6 months; 
4) podocyte number remains stable from the young till 
10 months of age, and was reduced till 30 months of age; 
5) GBM is thickened and typical knob-like structures are 
present from 3 months and gradually increases with age; 
6) single-cell transcriptome analysis reveals: compared 
with the maturing mice, the level of basement membrane 
component genes Lamc1, Lama3, Agrn, shows significant 
differences in the aging mice. These results offer the base-
line reference values at various developmental stages of 
C57BL/6 mice under the physiological condition.

The most striking feature of the C57BL/6 mouse kidney 
is the characteristic nodules protruded on the subepi-
thelial side of the GBM appearing from 3 months old till 
senescence at 30 months old. Similar GBM nodules have 
also been reported in several studies and researchers are 
arguing whether this alteration is age-related or gene defi-
ciency related phenotype. In ddY mice, a murine model 
for spontaneous IgA nephropathy, there is a progressive 
increase in glomerular extracellular matrices, includ-
ing the GBM thickening and formation of GBM nodules 
[16]. Of interest, studies have also shown that amino-
peptidase A (APA) knockout mice exhibited a distinctive 
appearance of knob-like structures, supporting a role for 
APA in the maintenance of glomerular structures [17]. 
Other studies also report that in Agrin knockout mice, 
charge selectivity is a feature of GBM changes [18]. In the 
knockout mice of discoidin domain receptor 1 (DDR1) 
gene, the receptor tyrosine kinase for type IV collagen 
in basement membranes, electron microscopy showed a 
localized, subepithelial, mushroom-like isodense thick-
ening of the GBM with a focal loss of the podocyte slit 
diaphragms. This study suggests that the interaction 
between type IV collagen and DDR1 plays an important 
role in maintaining the GBM integrity [19]. Though dif-
ferent terms are used in different studies, the main com-
ponent of these GBM nodules is the cell matrix. In this 
study, we found that similar GBM knobs were present 
starting from 3 months of age and becoming frequent 
with age till 30 months. This result suggests that whether 
it is called GBM nodules, knob-like structures, or mush-
room-like isodense GBM thickening, the appearance of 
this typical phenotype is age-related in mice. Notewor-
thy, gene deficiency could also cause the GBM bulges, 
the main difference lies in the occurring age, number, 
and size of the nodules. For instance, in 4-weeks-old APA 
knockout mice, the GBM knob-like structures are seen 
with the number increasing significantly at week 12 com-
pared to age-matched wild type littermates [17]. These 
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Fig. 4 Single-cell transcriptome analysis reveals differences in gene levels with age in mice. (a) soft k-means clustering analysis of whole kidney cells 
identifies 14 cell clusters corresponding to 12 different cell types. (b) Differentially expressed genes in different cell types. (c,d) GO and KEGG enrichment 
analysis of genes within senescent mice compared with maturing mice. (e,f,g) Respectively represent the normalized expression of Lamc1, Lama3 and 
Agrn gene in middle-age and senescence. (h) Single cell-type specific average expression of human monogenic disease genes. Mean expression values 
of the genes were calculated in each cluster. In the heatmap, each row represents one gene and each column is single cell type
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data indicate that when analyzing the GBM phenotype 
using C57BL/6 mice as an experimental model, the ani-
mal age should be cautiously selected.

Mice are now recognized as the preferred experimen-
tal model for numerous preclinical areas pertaining to 
human diseases, including diabetes research, on account 
of their comparatively economical nature, strong pro-
creation, abbreviated gestation period, and straightfor-
ward genetic manipulation capabilities. In both human 
and experimental animals, males have renal failure at a 
quicker rate than females [20]. The animal gender may 
be another influencing factor in different individual stud-
ies. As a result, our study provides a range of sex-related 
phenotypic differences for reference. Kidney functions 
are determined by sex, androgens induced kidney over-
growth in developing mice by inducing an initial surge of 
cell proliferation followed by a subsequent enlargement 
of cell size [21]. Of course, in individual experimental set-
tings, gender should be carefully considered.

The GBM, with podocytes and glomerular endothelial 
cells on either side, comprises the critical glomerular fil-
tration barrier and functions as both a size and charge 
selective filter. It is a mixture of extracellular matrix 
composed of various substances, including collagen IV, 
laminin, and heparin sulfate glycosaminoglycan, etc. [22, 
23]. Genes in both podocytes and endothelial cells may 
regulate the secretion of GBM components and their bal-
ance plays a critical role in maintaining its physiologi-
cal function. To get a deep insight into the mechanisms 
of this specific GBM knob-like phenotype, we applied 
single-cell transcriptome analysis to explore the pro-
files of GBM-associated genes and potential interactions 
between glomerular cells. Laminin, type IV collagen, 
nidogen, and heparan sulfate proteoglycan are the four 
main macromolecules that make up GBM, an extracellu-
lar matrix that resembles a sheet. The major one in GBM 
is agrin [24]. Laminin is necessary for the development of 
a basement membrane in both the early embryo and the 
embryoid body [25]. The lack of the γ1 chain results in 
distinct processing of the remaining subunits within the 
trimer, hence impeding the formation of a laminin mol-
ecule capable of polymerisation [26]. In mice lacking the 
LAMC1 gene (laminin γ1 gene), the basement membrane 
did not form, and only irregular deposits of collagen IV 
were found beneath the epithelia [27]. LN α3 appears 
to be required for glomerular endothelial cells (GEnCs) 
maturation. In Lama3−/− mice, endothelial cells migrate 
into the GBM scaffold deposited by podocytes. GEnCs 
generate their own basement membrane and adhere to 
it, although they are unable to successfully generate fully 
functional tubular structures or fenestrations [28]. Agrin 
is the major heparan sulfate proteoglycan of the GBM 
[29], dramatic reduction in the GBM anionic charge 
was detected when agrin was removed from the GBM 

by podocyte-selective knockout of Agrn. Our results 
have shown that genes of laminin and agrin expression 
were significantly upregulated in endothelial cells. These 
increased components could be the result of this GBM 
phenotype. However, in human kidneys, such GBM nod-
ules were not seen at the old age, nor were reported in 
the literature [30]. This suggests that the GBM knob-
like features may be species-specific. In C57BL/6 mice, 
a robust murine model used for pathogenesis study, 
enough attention should be paid when the GBM was ana-
lyzed, especially in diabetic nephropathy when the GBM 
thickness is a gold standard for evaluating the disease 
state. Remarkably, proper age-matched controls should 
be set in designing the individual experiment. This partly 
explains why in most studies, the age of mice is usually 
between 6 and 8 weeks when in this period the histopa-
thology and transcriptomics are regarded as biologically 
normal.

Mice and human share a significant portion of their 
genetic makeup, which allows mice to serve as useful 
models for many human diseases and biological pro-
cesses. The biological and pathological profiles of the 
kidney would be a novel and crucial resource for mecha-
nistic insights and testing of potential therapeutic inter-
ventions. Noteworthy, cross-species comparisons on the 
transcriptomes of the principal glomerular cell types vali-
dated consistent differential expression pattern between 
the two species for most of the genes [31]. Hence, further 
validation is required on the specific molecular mecha-
nisms of the formation of GBM knob-like phenotype in 
our study.

Our kidney cell atlas also clarifies the pathogenesis of 
aging and kidney disease. We discovered that the mouse 
homologs of the human genes causing kidney disease to 
have been associated with aging. From this perspective, 
it may be argued that age plays a distinct role in the iden-
tification of potentially influential genes associated with 
kidney disease.

The current data provides the fundamental reference 
values for renal histopathology and biological parameters 
during different developmental stages of C57BL/6 mice 
under normal physiological conditions. It is noteworthy 
that the GBM knob-like structures, which are observed 
in C57BL/6 mice, are associated with senescence, and 
emerge at 3 months of age. Various stages of development 
have distinct phenotypes that may affect the interpreta-
tion of the results. Consequently, careful consideration 
should be taken when selecting the age of C57BL/6 mice 
for individual settings.
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