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Is the inflammasome a potential therapeutic
target in renal disease?
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Abstract

The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to
infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger
inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and
pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the
NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of
pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal
cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a
lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with
NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases.
The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia,
glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may
also be responsible for development of CKD itself and its related complications, including vascular calcification and
sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3
inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive
potential therapeutic target in a variety of renal diseases.
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Introduction
Inflammation is central to the pathogenesis of many renal
diseases. The innate immune system, a first line defense
against pathogens, is usually involved in the initiation and
propagation of inflammation. It is activated by a series of
germ-line encoded pattern recognition receptors (PRRs)
that allow discrimination of ‘self ’ from ‘non-self ’ antigens.
PRRs recognize conserved pathogen-associated molecular
patterns (PAMPs) on invading organisms, or respond
to host-derived danger-associated molecular patterns
(DAMPs) released in response to stress, tissue injury, or
cell death. Several classes of PRRs have been identified, in-
cluding transmembrane Toll-like receptors (TLR), C-type
lectin receptors (CLRs), the retinoic acid inducible gene-I
(RIG-I) receptors, intracellular Nod-like receptors (NLRs),
* Correspondence: nish_arul@yahoo.com
1Imperial College Kidney and Transplant Institute, Hammersmith Hospital,
Imperial College London, London, UK
2Bloomsbury Institute of Intensive Care Medicine, Division of Medicine,
University College London, WC1E 6BT London, UK
Full list of author information is available at the end of the article

© 2014 Turner et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
and the recently identified HIN-200 receptors [1-3]. Extra-
cellular PAMPs and DAMPs are recognized by TLRs and
CLRs, whereas NLRs and RIGs recognize intracellular
molecular patterns (Table 1).
PRRs are expressed primarily by innate immune cells,

but also by endothelial and epithelial cells. The innate
immune system is ‘primed’ by activation of PRRs by
PAMPs or DAMPs, which leads to activation of nume-
rous proinflammatory transcription factors, the best cha-
racterized being nuclear factor kappa-B (NF-κB) and
activator protein-1 (AP-1), with subsequent transcription
of multiple mediators (including cytokines and chemo-
kines) and receptors.
A key mechanism responsible for the post-transcrip-

tional processing and release of mature cytokines is
formation of the inflammasome complex. The human
genome encodes 23 NLR proteins broadly divided into
NLRP (with a pyrin domain) and NLRC (with a caspase
recruitment domain), a subset of which are capable of
forming an inflammasome complex. This multiprotein
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Table 1 Activators of the inflammasome

Sterile activators Pathogen activators (PAMPS)

DAMPs Environment derived Bacteria derived Virus-derived Fungus-derived Protozoa-derived

ATP Alum Pore-forming toxins RNA β-glucans Hemozoin

Cholesterol crystals Asbestos Lethal toxin M2 protein Hyphae

MSU/CPPD crystals Silica Flagellin/rod proteins Mannan

Glucose Alloy particles MDP Zymosan

Amyloid β UV radiation RNA

Hyaluronian Skin irritants DNA

Activators of the inflammasome are divided into 2 categories: Sterile activators include host derived DAMPs and environment derived molecules, and pathogen
activators include PAMPs derived from bacteria, virus, fungi and protozoa.
Abbreviations: CPPD Calcium pyrophosphate dehydrate, DAMP Damage-associated molecular pattern, MDP Muramyl dipeptide, MSU Monosodium urate,
PAMP Pathogen associated molecular pattern.

Turner et al. BMC Nephrology 2014, 15:21 Page 2 of 13
http://www.biomedcentral.com/1471-2369/15/21
cytosolic complex oligomerizes to provide a platform for
processing and release of cytokines. Seven cytoplasmic
receptors form an inflammasome complex: NLRP1 (NLR
family, pyrin domain containing 1, also called NALP1),
NLRP3 (also called NALP3 or cryopyrin), NLRP6,
NLRP12, NLRC4 (NLR family, caspase recruitment
domain (CARD) containing 4, also called IPAF), AIM2
(absent in melanoma-2), and RIG-1 (retinoic acid indu-
cible gene 1). Of these receptors, the NLRP3 inflam-
masome is the best characterized.

Review
The NLRP3 inflammasome
This large multiprotein complex (>700 KDa) forms in re-
sponse to diverse PAMPs, including lipopolysaccharide
(LPS), peptidoglycan, bacterial DNA, viral RNA and fungi,
and DAMPs such as monosodium urate crystals (MSU),
calcium pyrophosphate dehydrate, cholesterol crystals,
amyloid β, hyaluronan and, possibly, glucose [1] (Table 1).
Priming of the cell (signal 1) by activation of PRRs results

in NFκB -dependent transcription of pro-IL-1β and upre-
gulation of NLRP3. Assembly of the NLRP3 inflammasome
relies on the adaptor molecule ASC (Apoptosis-associated
Speck-like protein containing a C-terminal caspase recruit-
ment domain (CARD)). The ASC protein is composed of
PYD (N-terminal pyrin domain) and CARD domains. The
N-terminus of NLRP3 also contains a PYD that mediates
homotypic binding with ASC via a PYD-PYD interaction.
Through its CARD, ASC interacts with procaspase-1 lea-
ding to autocatalytic activation of caspase-1. This results in
processing of pro-IL-1β and pro-IL-18 to their active forms
(IL-1β and IL-18) and their release (Figure 1).
The cell surface P2X7 receptor (P2X7R) facilitates as-

sembly of the NLRP3 inflammasome [4-6]. ATP released
into the extracellular milieu during inflammation is a
potent stimulus for P2X7R activation [7-9]. This results
in formation of an ion pore and K+ efflux, with reduc-
tion in intracellular K+, a key step in inflammasome
activation [10]. Activation of P2X7R by LPS and ATP re-
sults in MyD88-dependent NFκB activation (signal 2),
and transcription of pro-IL-1β [11]. Following LPS prim-
ing of monocytes, P2X7R activation stimulates NADPH
oxidase generation of superoxide anions, thereby facili-
tating NLRP3 activation [12].

Other inflammasomes
NLRP1 was the first inflammasome to be described and
is activated following cleavage by the lethal toxin from
Bacillus anthracis [13]. The NLRP1 inflammasome has its
own CARD, so can bypass the requirement of the adapter
molecule ASC for inflammasome activation (Figure 2).
Cleavage by the anthrax toxin directly activates CARD,
leading to activation of caspase-1 [13]. An alternative
mechanism of NLRP1 activation is by the toxin inhibiting
p38 mitogen-activated protein kinase and Akt kinase,
leading to opening of the connexion channel for ATP re-
lease, resulting in P2X7R signaling [14]. There are simila-
rities with the mechanism of activation of the NLRP3
inflammasome.
A second class of inflammasomes contains members

of the PYHIN family, rather than NLRs. These are cha-
racterised by N-terminal PYD and C-terminal HIN-200
(hemopoetic interferon-inducible nuclear antigen with
200 repeats) DNA binding domains. Examples include
AIM2 and Interferon-γ inducible protein 16 (IFI16) in-
flammasomes. These lack a CARD domain and require
ASC for recruitment of pro-caspase-1 to form a stable
inflammasome complex. The PYD domain interacts with
the PYD domain of ASC. Following detection of bac-
terial or viral dsDNA, AIM2 and IFI16 inflammasomes
assemble with subsequent secretion of IL-1β and IL-18
[15], which is severely impaired in mice deficient in
AIM2 that are highly susceptible to Mycobacterium tu-
berculosis infection [16]. AIM2 can recognise self-DNA,
but this is limited under steady-state conditions because
of its cytosolic location. In conditions where self-DNA is



Figure 1 Model of NLRP3 inflammasome activation. NLRP3 is activated by a vast array of stimuli including extracellular pathogen PAMPs
such as bacterial LPS via pattern recognition receptors (PRR) such as Toll-like receptors (TLR) and DAMPs. This comprises signal 1 and leads to
synthesis of the cytokine precursor pro-IL-1β via NF-κB and other components of the inflammasome such as NLRP3 itself. Many of the known
activators of the inflammasome generate ROS which can bind to NLRP3 and this appears necessary for its activation. Extracellular ATP binding
to the P2X7 receptor (P2X7R) comprises signal 2. This promotes the recruitment and opening of the pannexin-1 pore channel which causes
rapid K+ efflux, another event which appears necessary for NLRP3 activation. NLRP3 assembly occurs when, through its pyrin domain, NLRP3
binds to the pyrin domain on an ASC molecule which then binds to pro-caspase-1 via its CARD domain. This leads to cleavage of pro-caspase-1
and subsequent cleavage of pro-IL-1β and pro-IL-18 to their active forms. Abbreviations: DAMP, damage-associated molecular pattern; LPS,
lipopolysaccharide; ROS, reactive oxygen species; PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; TLR, toll-like
receptor; PYD, pyrin domain.

Turner et al. BMC Nephrology 2014, 15:21 Page 3 of 13
http://www.biomedcentral.com/1471-2369/15/21
not cleared from the extracellular compartment, it is likely
that DNA can activate AIM2 and drive inflammation. Of
note, HIN-200 proteins are considered a candidate locus
for susceptibility to lupus [17]. In contrast to AIM2, IFI16
is located within the nucleus; the mechanism by which it
discriminates between self and viral DNA in the nucleus is
currently unknown.
The NLRC4 inflammasome interacts directly with pro-

caspase-1 via homotypic CARD interactions, leading to
processing of caspase-1. This inflammasome complex
plays an essential role in the innate immune response to
the bacterial proteins flagellin and PrgJ [18]. Direct binding
of NLRC4 with flagellin or PrgJ has not been shown; how-
ever, the proteins of the NAIP family (NLR family, apop-
tosis inhibitor) act as immune sensors that can interact
with, and control, NLRC4 activation. The NAIP2-NLRC4
complex associates with PrgJ, while the NAIP5-NLRC4
complex associates with flagellin [19]. This suggests that
distinct NAIP proteins allow the NLRC4 inflammasome to
differentiate among different bacterial ligands.
The NLRP6 inflammasome associates with ASC, indu-
cing caspase-dependent processing and release of IL-1β.
At the mRNA level NLRP6 is highly expressed in mouse
liver, kidney and small intestine, and plays a central role in
modulating inflammatory responses in the gut to allow re-
covery from intestinal epithelial damage, tumorigenesis,
and in controlling the composition of the gut microflora
to prevent colonization by harmful bacteria [20,21]. Data
on NLRP6 and renal disease are limited and warrant fur-
ther study.
The NLRP12 inflammasome is expressed in human

myeloid cells. It acts as a negative regulator of inflam-
mation by reducing NFκB activation and inhibiting che-
mokine expression through ATP hydrolysis [22]. NLRP12
also reduces NFκB activation by (i) TLR-signaling mole-
cules MyD88, IRAK-1 (type I interleukin-1 receptor-
associated protein kinase), and TRAF6 (TNF receptor
(TNFR)-associated factor), and (ii) the TNFR signaling
molecules TRAF2 and RIP1, but not the downstream
NFκB subunit p65 [23]. NLRP12, like NLRP6, can



Figure 2 Models for inflammasome activation and assembly. The NLR family members and the HIN-200 proteins, AIM2 and IFI16, assemble
inflammasome complexes. NLRs are characterised by a NACHT domain with or without an N-terminal PYD domain and a variable number of LRRs.
AIM2 and IFI16 contain an N-terminal PYD domain followed by a DNA binding HIN-200 domain. The PYD domain of NLRP3, 6 and 12, AIM2 and IFI16
recruit the adaptor protein ASC via homotypic binding to its PYD domain allowing indirect recruitment of caspase-1 through interaction with the CARD
domain. NLRP1 and NLRC4 directly recruit caspase-1 through a CARD domain. NLRC4 is activated by NAIP proteins bound to specific ligands, NAIP 2
binds to the bacterial rod protein PrgJ whereas NAIP 5 and 6 bind to bacterial flagellin. Activation of the inflammasome leads to maturation and secretion
of IL-1β and IL-18 aswell as inflammatory cell death by pyroptosis. Abbreviations: AIM2, absent in melanoma 2; CARD, caspase recruitment domain;
DAMP, danger-associated molecular pattern; FIND, domain with function to find; IFI16, Interferon-γ inducible protein 16; LRR, leucine rich repeat; NACHT,
nucleotide-binding and oligomerization domain; NAIP, NLR family apoptosis inhibitor; NLR, Nod-like receptor, PAMP, pathogen associated molecular
pattern; PYD, pyrin domain.
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contribute to the maintenance of intestinal epithelium,
since mice deficient in NLRP12 are more susceptible to
colonic inflammation and tumorigenesis [24].

Processing of IL-1α, IL-1β, IL-18, and caspase-1
IL-1 is a key cytokine in many inflammatory diseases.
Activation of MAPK and NFκB signal transduction
pathways is central to the diverse actions of IL-1, which
include production and/or release of nitric oxide (NO),
cyclooxygenase-2 (COX-2) and superoxide products,
and other pro-inflammatory mediators [25,26].
IL-1 has two biologically active isoforms, IL-1α and

IL-1β, which bind to the same receptors [27,28]. Both are
produced as 31 kDa precursors that are stored within the
cytosol. Pro-IL-1α is constitutively expressed, whereas
pro-IL-1β is transcribed in response to an inflammatory
or infectious stimulus [25]. Various inflammatory stimuli
engage with the PRR receptors of immune cells, activating
MAPK and/or NFκB signalling cascades, and resulting in
the synthesis of pro-IL-1β from its pro-IL-1β precursor,
which is also stored within the cytosol.
IL-1α release is typically described as being passive, as
a consequence of non-apoptotic cell death [29]. IL-1α
processing depends on calpain protease activity [30].
The activation of calpain-like may be NLRP3-inflamma-
some/caspase-1 dependent or independent, depending
on the type of NLRP3 agonist [31]. Caspase-1 knockout
cells are unable to secrete IL-1α in response to soluble
NLRP3 stimuli while caspase inhibitors have no effect,
suggesting that the catalytic activity of caspase-1 is not
required [32]. This protease- independent function of
caspase-1 in the release of IL-1α is not well established.
Although IL-1α has similar biological activity in its pre-

cursor and cleavage product forms; in contrast, IL-1β is
only active after cleavage to its 17 kDa mature form.
Caspase-1 is crucial for processing of intracellular pro-
IL-1β, although extracellular pro-IL-1β can be processed
by several proteases, including serine proteinase 3 and the
metalloproteinases MMP-2 and MMP-9 [33,34].
Caspase-1 is produced from the constitutively expressed

45 kDa cytoplasmic pro-enzyme, pro-caspase-1. This re-
quires post-translational processing to form 20 and 10 kDa
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forms of active caspase-1 [34], and occurs following as-
sembly of the NLRP3 inflammasome. Proteolytic activa-
tion of IL-1β occurs within the inflammasome complex.
Mature IL-1β is released into the extracellular space by
exocytosis or loss of membrane integrity [35].
Synthesis and release of IL-18 is closely linked to IL-1.

IL-18 is a key mediator in the host response to infection
and the inflammatory response [27,36]. It is also consti-
tutively produced as a precursor, pro-IL 18 [36], which is
cleaved by either caspase-1 or proteinase-3 into its active
form released into the extracellular space along with ma-
ture IL-1β.
Contact with a DAMP or PAMP (‘signal 1’) alone is in-

sufficient for extracellular release of IL-1β and IL-18. An
additional stimulus (‘signal 2’), mediated by a variety of
ligands including extracellular ATP, nigericin, bacterial
toxins, hypotonic stress and T cells, is usually required
for the extracellular release of active IL-1β and IL-18.
However, the best-established stimulus for this post-
translational processing and release is ATP, acting via
the P2X7R [33,36].

Effects of IL-1α, IL-1β, IL-18
Il-1β has diverse functions relating to its unique ability
to regulate inflammation at both the nuclear and mem-
brane receptor levels. Unlike other cytokines, the effects
of IL-1β on lymphocytes are largely indirect, mediated
by the induction of gene expression and synthesis
of cyclooxygenase-1 (COX-2), prostaglandin-E2, platelet
activating factor, NO, and IL-6 [25,26]. In turn, these
mediators result in fever, vasodilation, hyperalgesia, and
a repertoire of immune cell functions. IL-1α and IL-1β
also act as co-stimulatory molecules of T cells with an
antigen, and may contribute to T cell polarization (early
Th17 differentiation in vivo and Th17-mediated auto-
immunity) [37].
IL-1 induces angiogenesis via upregulation of VEGF. This

mechanism is mediated primarily via the PI3-K/mTOR
pathway in renal mesangial cells [38], and may be an im-
portant protective mechanism in ischemic injury. How-
ever, excessive IL-1 may be detrimental. IL-1β induces the
expression of adhesion molecules, including intercellular
adhesion molecule-1 and vascular cell adhesion molecule-
1, on mesenchymal and endothelial cells [39-42]. IL-1
knockout (KO) mice and antagonist-treated rats develop
significantly less infiltration of polymorphonuclear leuko-
cytes, and have less severe renal histological and bioche-
mical derangement, in ischemia-reperfusion (I-R) injury
[43-45]. Deficiency or neutralization of IL-1 confers a
similar protective effect in experimental glomerulone-
phritis (GN) [46-48].
Excessive tissue destruction may be mediated in part

by IL-1α. Unlike IL-1β, IL-1α is active in its precursor
form. This active precursor is constitutively expressed in
epithelial cells [49] and the inflammatory resulting from
cell necrosis may be mediated by surface IL-1α [29]. Ac-
tivity of IL-1α is controlled by endogenous expression of
intracellular IL-1Ra, which prevents signal transduction
[50], consistent with findings in a model of renal I-R
injury: the number of apoptotic tubular cells was lower
in IL-1RA-treated animals 24 h after ischemia, which
was paralleled by a Bax/Bcl-2 mRNA ratio towards anti-
apoptotic effects [45]. Biologically active IL-1α is also
expressed on the membrane of monocytes and B-lympho-
cytes [51,52]. In addition, the induction of many genes
by IFN-gamma (INF-γ), including HLA-DR, ICAM-1,
IL-18BP, and genes mediating its antiviral activity, depends
on basal IL-1α but not IL-1β [53].
IL-18 (previously known as INF-γ inducing factor) is a

member of the IL-1 cytokine family, with many properties
distinguishing it from IL-1α and IL-1β. IL-18 is primarily
expressed by macrophages and dendritic cells, but also by
epithelial cells throughout the body [54,55]. One of the
key features of IL-18 is its ability to induce INF-γ produc-
tion [55] and subsequent T cell polarization [56,57]. IL-18
plays an important role in the TH1 response, primarily by
its ability to induce IFN-γ production in T cells and
natural killer cells [58]. Fas ligand-mediated cell death is
also IL-18-dependent [59,60], and IL-18 neutralization is
associated with a reduction in renal tubular apoptosis
in unilateral ureteric obstruction (UUO) and I-R injury
[60,61]. As well as to these distinguishing features, IL-18
also shares properties with other cytokines, including in-
creases in cell adhesion molecules and chemokines, and
NO synthesis [62-65]. IL-18 deficiency or neutralization is
associated with decreased immune cell infiltration and
relatively preserved renal function in UUO, I-R injury, and
GN [61,66-68].

Cell death and pyroptosis
Caspase-1 activation and subsequent production of IL-1β
and IL-18 has a biphasic effect; low levels cause cytokine
production but, above a certain threshold, can lead to
pyroptosis [69]. This is a catastrophic form of cell death
commonly found in monocytes, macrophages and den-
dritic cells, with morphological characteristics of apoptosis
and necrosis. Cell lysis occurs due to caspase-1-dependent
pore formation in the cell membrane, disruption of the
cellular ionic gradient, osmotic driven water influx, and
cell swelling [6,7]. This leads to inflammasome activation,
release of proinflammatory cytokines, damaged DNA, and
metabolic enzymes and, ultimately, cellular disruption re-
leasing other DAMPS. Release of mitochondria into the
extracellular space results in discharge of ATP that acts as
a DAMP.
An alternative mechanism of cell death relates to acti-

vation of the P2X7R. Here, irreversible pore formation
allows the non-selective passage of ions and hydrophilic
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solutes of up to 900 Da, resulting in colloido-osmotic
cell lysis [33]. P2X7R-induced shrinkage depends on K+

efflux via KCa3.1, a voltage-independent potassium chan-
nel activated by intracellular calcium, and a pathway of
Cl- efflux distinct from that implicated previously in
apoptosis [70].
Regulation of the inflammasome
Activation of the inflammasome results in a rapid and
substantial inflammatory response. As such, the inflam-
masome is tightly regulated at both transcriptional and
post-transcriptional levels. Basal expression of inflamma-
some components, in particular NLRP3, is relatively low
[8]; pro-apoptotic pathways, such as FAS ligand-receptor
interactions, are required to induce expression of ASC [9].
The subcellular location of inflammasome components fa-
cilitates its regulation. ASC is localized to the nucleus in
quiescent cells, but it is recruited to the cytoplasm on cell
activation [10].
Alternatively spliced inflammasome components gene-

rate protein variants with different activities. ASC has at
least three different isoforms, one of which has an inhibi-
tory effect on inflammasome activity [71]. Several proteins
regulate inflammasome activity by sequestration of in-
flammasome components. Anti-apoptotic Bcl-2 proteins,
including Bcl-2 and Bcl-xL, interact with NLRP1 to pre-
vent ATP binding and inflammasome activation [12]. The
pyrin-only proteins (POP) and the pyrin-containing NOD
(PYNOD) proteins inhibit inflammasome formation via in-
hibition of NFκB and suppression of ASC, respectively
[72,73]. Other inhibitory proteins include COP (CARD
only protein), INCA (inhibitory CARD), and ICEBERG all
three proteins contain a CARD and they are believed to
act as decoys inhibiting formation of an active inflamma-
some [74].
Drugs modulating the NLRP3 inflammasome /IL-1/IL-18
axis
Growing evidence suggests that the inflammasome and
the IL-1β/IL-18 axis play an integral part in the patho-
genesis of many acute and chronic conditions, including
gout, rheumatoid arthritis, atherosclerosis, Alzheimer’s
disease, diabetes mellitus, and, most recently, oxalate
crystal nephropathy. Several components of the NLRP3
inflammasome have been implicated in renal disease
(Table 2). Therapeutic interventions that modulate this
pathway are being developed, and the functional signifi-
cance of the inflammasome and the IL-1β/IL-18 axis in
renal disease is of growing interest. Drugs inhibiting IL-1,
P2X7R, and caspase-1 have been developed, although to
date only IL-1 inhibitors have been successful in clinical
studies of rheumatoid arthritis (RA) and cryopyrin-
associated periodic syndrome (CAPS).
IL-1 inhibitors
The clinical application of IL-1 inhibitors has been slow,
because the first generation of inhibitors, the recombinant
IL-1 receptor antagonists, has a short circulatory half-life
and limited affinity for the IL-1 receptor. A large molar
excess of recombinant IL-1ra is needed to antagonize
endogenous IL-1 effectively.
Drugs inhibiting the action of IL-1 include recombi-

nant human IL-1ra (Anakinra), a humanized monoclonal
IL-1β antibody (Canakinumab), and a neutralising anti-
body against IL-1α and IL-1β (Rilonacept). Anakinra
competitively inhibits binding of IL-1 to the IL-1 recep-
tor and has been successfully used in RA [99] and auto-
inflammatory syndromes [100]. Rilonacept is a dimeric
protein consisting of the extracellular portion of the IL-1
receptor and the Fc portion of human IgG1 [101]; it
works by effectively neutralizing IL-1α and IL-1β. Pre-
liminary data suggest it may be beneficial in patients
with autoinflammatory syndromes [102,103]. Canakinu-
mab, a monoclonal antibody against IL-1β, has a longer
half-life compared with the other antagonists, and may
be useful in patients with RA and CAPS [104,105].
Other diseases that may benefit from IL-1 blockade in-
clude acute gout [106], diabetes mellitus [100], inflam-
matory lung disease [107], adult-onset Still’s disease
[108], and juvenile idiopathic arthritis [109].

P2X7R antagonists
Drugs inhibiting the P2X7R are currently in Phase 1 and 2
clinical trials [110]. At present there are no data to de-
monstrate a beneficial effect of P2X7R antagonism, al-
though trials are still at an early stage. Preclinical data
suggest P2X7R antagonists have a potential role in the
treatment of inflammatory rheumatological [111,112],
renal [78,113], and pulmonary diseases [114-116]. Al-
though Phase 1 and 2 studies have demonstrated safety,
preliminary studies have so far not shown clinical efficacy
in the management of RA [117].

Caspase-1 inhibitors
Small molecule inhibitors of caspase-1 have been used
in experimental models. Only pralnacasan (VX-740) and
VX-765 have been used so far in patients; however, con-
cerns about liver toxicity with prolonged use of pralna-
casan have resulted in discontinuation of clinical trials in
RA, psoriasis, and osteoarthritis [118]. A Phase 2 clinical
trial of VX-765 (NCT00205465) has been completed, al-
though the results have yet to be published [118].

The inflammasome in renal disease
There is a better understanding of the role of IL-1 and
IL-18 in renal disease, although the importance of the
inflammasome in the activation and secretion of IL-1β
and IL-18 has only been investigated recently. Several



Table 2 Inflammasome and inflammatory renal diseases

P2X7 Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Harada [75] TNF-α stimulation Rat - NA Mesangial cells

Gonclaves [76] Unilateral ureteric
obstruction

Mouse P2X7
−/− Beneficial PTEC

Vonend [77] Hypertension Rat - NA Glomerular podocytes

Diabetes mellitus

Turner [78] Experimental
glomerulonephritis

Mouse - NA Glomeruli and infiltrating macrophages

Rat Glomeruli

Lupus nephritis Humans - NA Glomeruli

PTEC

Taylor [70] Experimental
glomerulonephritis

Rat Antagonist Beneficial -

Mouse P2X7
−/−

NLRP3 Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Deplano [79] Glomerulonephritis Rat Genetic susceptible strain
(cf. Protected strain)

NA Glomeruli and bone marrow
derived macrophages

Vilaysane A [80] Non-diabetic
acute and chronic
kidney diseases

Human NA NA PTEC

Vilaysane A [80] Unilateral ureteric
obstruction

Mice NLRP3−/− Beneficial PTEC

Iyer S [81] Ischaemia- reperfusion
injury

Mice NLRP3−/− Beneficial -

Jalilian [82] None Dog NA NA Epithelial cells

IL-1 Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Yamagishi H [83] Unilateral ureteric
obstruction

Mouse IL-1 RA Beneficial PTEC

Haq M [44] Ischaemia- reperfusion
injury

Mouse IL-1 RA Beneficial -

IL-1R −/−

Chen A [46] IgA nephropathy Mice IL-1 RA Beneficial -

Matsumoto [84] Glomerulonephritis Human NA NA

Tam [85] Glomerulonephritis Rat NA N/A

Lan [86] Glomerulonephritis Rat IL-1RA Beneficial

Karkar [87] Glomerulonephritis Rat Antibody Beneficial

Karkar [88] Glomerulonephritis Rat IL-1RA and soluble IL-1R Beneficial

Tam [89]

Timoshanko JR [48] Crescentic
glomerulonephritis

Mice IL-1β −/− Beneficial -

IL-1R −/−

Lichtnekert [47] Anti- GBM disease Mice NLRP3 −/− No effect Renal dendritic cells

Caspase1 −/− No effect

ASC −/− No effect

IL-1R1 −/− Benefit

Il-18 −/− Mild
benefit

Schorlemmer H [90] SLE-like disease Mice IL-1 RA Beneficial -

Furuichi [43] Ischaemia- reperfusion
injury

Mice IL-1αβ −/− Beneficial glomeruli and cortical arterioles

IL-1RA −/−
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Table 2 Inflammasome and inflammatory renal diseases (Continued)

Rusai [45] Ischaemia- reperfusion
injury

Rats IL-1 RA Beneficial -

Granfeldt [91] Endotoxaemia Pigs NA NA Endothelial cells of the cortical arterioles
were positive for IL-1β

IL-1ra was detected in the glomerulus
and tubular cells

Hertting [92] E.Coli pyelonephritis Mice IL-1β −/− Harmful -

Caspase-1 Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Homsi [93] Glycerol- induced AKI Rats Caspase-1 inhibitor Beneficial Constitutive tubular expression of IL-18

Induction of tubular IL-1β

Wang [94] Endotoxaemia Mice Caspase 1 −/− Beneficial -

IL-1 Ra No effect

IL-18 antiserum No effect

Gauer [95] None Humans NA NA Collecting duct alpha- and beta-intercalated
cells express P2X7, IL-18

Edelstein [96] Hypoxia Mice Caspase 1 −/− Beneficial IL-18 in PTEC

IL-18 binding protein No effect

IL-18 Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Bani-Hani A [68] Unilateral ureteric
obstruction

Mice Transgenic mice overexpressing
human IL-18-binding protein

Beneficial TECs

Wu H [66] Ischaemia- reperfusion
injury

Mice IL-18 −/− Beneficial TECs

IL-18 −/− BM chimera Beneficial

IL-18-binding protein Beneficial

Sugiyama M [67] Bovine serum
albumin-induced
glomerulonephritis

Mice IL-18R −/− Beneficial -

Kinoshita K [97] Autoimmune disease Mice IL-18R −/− Beneficial -

Wang [61] Ischaemia-reperfusion
injury

Rat IL-18-binding protein Beneficial -

Zhang [60] Unilateral ureteric
obstruction

Mice Overexpress human IL-18-binding
protein isoform a

Beneficial -

VanderBrink [98] Unilateral ureteric
obstruction

Mice IL-18 −/− NA TECs

ASC Disease Species Antagonist/genetic deletion Effect Renal localization of
inflammasome component

Iyer S [81] Ischaemia- reperfusion
injury

Mice ASC −/− Beneficial -

Abbreviations: PTEC Proximal tubular epithelial cells, NLRP3 Nod-like receptor protein 3, IL-1RA Interleukin 1 receptor antitagonist, ARF Acute renal failure, TEC Tubular
epithelial cell, BM Bone marrow.
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primary renal diseases are associated with NLRP3 in-
flammasome activation. Similarly, many systemic diseases
affecting the kidneys are associated with NLRP3 inflam-
masome/IL-1β/IL-18 axis activation (Table 2). These in-
clude UUO [68,76,80,83], I-R injury [43-45,61,66,81], GN
[46-48,67,70,90,97,119], sepsis [91,92,94], CKD [80,120],
hypoxia [96], glycerol-induced renal failure [93], and crys-
tal nephropathy [121]. Apart from two studies of CKD of
various aetiologies [77,80] most of the disorders studied
have been acute inflammatory diseases. Recent data
suggests that the NLRP3 inflammasome is the principle
cause of progressive renal failure in oxalate nephropathy
[122]. P2X7R, IL-1β, IL-18, caspase-1, ASC, and NLRP3 are
all associated with renal inflammation and injury (Table 2).
Virtually every experimental model using genetic deletions
and/or receptor antagonists/antiserum against the NLRP3
inflammasome pathway has shown decreased severity of
disease, although publication bias cannot be excluded.
However, the functional significance of the inflamma-

some remains unclear in certain conditions. For instance,
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conflicting data exists with respect to ischaemia reper-
fusion injury. Whilst some reports describe a protective
effect of IL-1 receptor blockade with Anakinra in ische-
mia-reperfusion injury [45,81], others demonstrate no
benefit on renal injury responses [123]. This may be due
to NLRP3 mediated injury that is independent of inflam-
masome activity [123]. In such circumstances, pharma-
cological inhibition of downstream targets may be less
effective.
Intrinsic renal cells express components of the inflam-

masome pathway (Table 2). This is most prominent in
tubular epithelial cells and, to a lesser degree, in glomeruli.
The precise mechanisms involving the NLRP3 inflam-
masome in disease relate to both systemic and local (renal)
activation. Limited studies using global knockouts and
bone marrow chimeras suggest that systemic production
of cytokines may have a greater effect on renal injury [66].
Findings related to genetic deletion or inhibition of the
NLRP3 inflammasome pathway includes decreases in local
cytokines and chemokines, inflammatory cell infiltrate, and
apoptosis. It remains likely that locally released DAMPs
result in inflammasome activation, resulting in chemokine
release and immune cell infiltration. Differences in im-
mune cell regulation of the inflammasome affect the sus-
ceptibility and severity of autoimmune GN [79].
The role of NLRP3 inflammasome activation in human

renal disease is still uncertain. Consistent with experi-
mental data P2X7R and NLRP3 are upregulated in lupus
nephritis and non-diabetic CKD, respectively [80,119].
The most extensively studied component of the NLRP3
inflammasome in relation to renal disease is IL-18. Col-
lecting duct alpha- and beta-intercalated cells express
P2X7R and IL-18 under basal conditions [95]. An elevated
serum IL-18 correlates with the development of diabetic
nephropathy [124], while urine IL-18 is elevated in acute
kidney injury associated with critical illness [125], cardiac
surgery [126], and radiocontrast [127], supporting the no-
tion that the inflammasome is intimately involved in wider
inflammatory renal disease. Further studies investigating
the NLRP3 inflammasome pathway in human disease are
needed.

Chronic kidney disease and inflammation
In addition to mediating acute forms of renal injury and
disease, the IL-1/IL-18 axis may also be responsible for
development of CKD itself and its related complications.
Accelerated atherosclerosis and vascular calcification is a
hallmark feature in CKD [128]. Vascular inflammation
plays a role in vascular calcification and IL-18 may have
a distinct role in mediating vascular injury among pa-
tients with advanced kidney disease. Basal levels of IL-18
are elevated in patients on maintenance haemodialysis
[129]. The mechanism behind increased IL-18 produc-
tion may relate to elevated levels of circulating MCP-1
in patients with CKD [130]. IL-18, through production
of INF-γ, results in inflammation-related vascular injury,
atherosclerotic plaque formation, and plaque instability
[131-133]. IL-18 levels correlate with aortic pulse wave
velocity [134], a surrogate for aortic stiffness and a pre-
dictor of major adverse cardiovascular events among pa-
tients with CKD [135].
In addition to cardiovascular disease, sepsis accounts for

the majority of critical care admissions and mortality
among patients with end-stage kidney disease [136]. The
underlying mechanism(s) behind the increased suscepti-
bility to sepsis relates in part to altered levels of IL-1 and
IL-1RA, and monocyte activity. Basal levels of IL-1β,
TNFα, and IL-6 are elevated in CKD and in dialysis pa-
tients [137]. The IL-1ra/IL-1β ratio is also elevated
[137,138]. A higher IL-1ra/IL-1β ratio may participate in
the complex immune disturbances by reducing the bio-
logical activity of this vital pro-inflammatory cytokine in
playing a major role in the immune and inflammatory
network.
Complications associated with CKD are clearly multi-

factorial and a greater understanding of the role of the
NLRP3 inflammasome/IL-1/IL-18 axis in mediating these
complications is required before any therapeutic strategy
can be developed and applied.

Conclusions
The NLRP3 inflammasome is becoming increasingly
recognized as integral to the pathogenesis of many renal
diseases and their complications. However, much of our
knowledge of the inflammasome is limited to experimen-
tal models, but we need to elucidate its role in human
renal disease, especially in CKD and its complications.
Moreover, apart from inhibitors of IL-1, therapeutic
agents targeting the NLRP3 inflammasome pathway suit-
able for use in humans are still lacking. Yet the inflamma-
some is likely to prove to be key pathogenic mechanism in
nephrology and should be the subject of more intensive
research.
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