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Abstract

Background: Cardiovascular calcifications can be prevented by vitamin K and are accelerated by vitamin K antagonists.
These effects are believed to be mainly mediated by the vitamin K-dependent matrix Gla protein. Another vitamin
K-dependent protein, Gas6, is also expressed in vascular smooth muscle cells (VSMC). In vitro Gas6 expression was
shown to be regulated in VSMC calcification and apoptotic processes.

Methods: We investigated the role of Gas6 in vitro using VSMC cultures and in vivo in young and old Gasé-deficient
(Gas6”") and wildtype (WT) mice. In addition, Gas6”~ and WT mice were challenged by (a) warfarin administration,
(b) uninephrectomy (UniNX) plus high phosphate diet, or (c) UniNX plus high phosphate plus electrocautery of the

residual kidney.

Results: In vitro VSMC from WT and Gas6” mice exposed to warfarin showed increased apoptosis and calcified similarly.
In vivo, aortic, cardiac and renal calcium content in all groups was similar, except for a lower cardiac calcium content in
Gas6”~ mice (group a). Von Kossa staining revealed small vascular calcifications in both WT and Gas6”" mice (groups a-c).
In aging, non-manipulated mice, no significant differences in vascular calcification were identified between Gas6”” and
WT mice. Gas6”" mice exhibited no upregulation of matrix Gla protein in any group. Cardiac output was similar in all

treatment groups.

Conclusions: Taken together, in our study Gas6 fails to aggravate calcification against the previous assumption.

Background
Cardiovascular calcifications are highly prevalent in
chronic kidney disease and are associated with an in-
creased morbidity and mortality [1]. They can be ac-
celerated by warfarin, a direct inhibitor of the vitamin
K regenerating cycle [2]. Vascular calcifications occur
in the arterial media and intima [3]. Vascular smooth
muscle cells (VSMC) of the arterial media express
two vitamin K-dependent proteins, gla rich protein
[4], matrix Gla protein (MGP) [5] and Gas6 [6]. Both
require reduced vitamin K (KH,) as a cofactor for
posttranslational y-carboxylation and activation. MGP
potently inhibits vascular calcification via interference
with hydroxyapatite crystal formation [7].

In contrast to MGP, the role of Gas6 in vascular
calcification has repeatedly been suggested [8, 9] but
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so far has remained largely speculative. Gas6 shows
40 % homology to protein S; both are members of the
vitamin K family. Protein S is predominantly expressed
in the liver [10] whereas Gas6 is highly expressed in the
kidney, heart and lungs [11]. Both proteins are ligands
for the Axl tyrosine kinase receptors. These receptors
regulate cell survival and apoptosis [12]. Vitamin-K-
dependent carboxylation of Gas6 is essential for its
binding to the Axl receptor [13]. Tyrosine phosphoryl-
ation of Axl induces cell proliferation [14]. Gas6 is
known to protect endothelial cells and VSMC against
apoptosis [15, 16], and apoptotic bodies are known to
be associated with vascular calcifications. Another
potential and more coherent link between Gas6 and
vascular calcifications are in vitro data showing that
phosphate-induced calcification of VSMC is associated
with a downregulation of Gas6 expression [16]. In
addition, antiapoptotic effects and protection of calcifi-
cation of VSMC by statins were apparently mediated
through Gas6 mRNA stabilization [16]. Also effects of
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testosterone [9], taurine [17] and adiponectin [18] in
cells were linked to alterations in Gas6 expression.
Binding of Gas6 by alpha lipoic acid resulted in de-
creased apoptosis and calcification in VSMC and mice
[8]. So far no in vivo data are available on the role of
Gas6 itself in cardiovascular calcification. To clarify
this, we assessed Gas6 knockout (Gas6”") mice and
Gas6™”~ derived VSMC in in vitro and in vivo in cardio-
vascular calcification models.

Methods

Animals & diets

Gas6”™ mice, as described previously [19], were back-
crossed for more than 10 generations onto a C57BL/6
background. They received feed and water ad libitum.
Healthy, aging mice were sacrificed at the age of 34-36
weeks. For the surgical groups (uninephrectomy, UniNx
or electrocautery) the rodent chow (AB diets, Woerden,
the Netherlands) was supplemented to 0.95 % calcium
and 1.65 % phosphate. The warfarin chow contained 3 g/
kg. The warfarin diet or surgery was started at the age of
8-10 weeks and the diets were continued for 8 weeks.
UniNx was performed at the age of 8 weeks. Therefore,
the left kidney was eventrated and -after ligation of the ur-
eter with silk - fully removed. After one week of recovery,
the high phosphate diet was initiated. For more severe
kidney damage, electrocautery of the right kidney at the
age of 8 weeks plus UniNx of the left kidney 2 weeks later
were performed. Punctual lesions were set on the renal
cortex with a 2-mm diameter electrocoagulation ball tip
over all areas of the kidney (Erbe, Erbotom ACC 450,
Tubingen, Germany). The 1-mm deep punctuate lesions
were spaced 2 mm apart [20]. After 2 weeks, the contralat-
eral kidney was removed and after one additional week
the high phosphate diet was started (Fig. 1). In all
experiments, only female animals were used, except in
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aging mice where both genders were analyzed (age
matched). In our in vivo models 10 animals per group
were used at least, except in the electrocautery group
where only 4 animals could be analysed because of high
mortality and 6 animals for the initial, measurements in
healthy mice. All animals were treated in accordance with
the requirements of the Federation of the European La-
boratory Animals Science Associations. The protocol
was approved by the Landesamt fir Natur, Umwelt und
Verbraucherschutz NRW, Germany (Permit Number 84-
02.04.2011.A144). All surgery was performed under keta-
mine/rompun anaesthesia and all efforts were made to
minimize suffering.

VSMC cell culture

VSMC were isolated from the thoracic aorta of C57BL/6
and Gas6 "~ mice. After harvesting, aortas were incubated
with 2 g/L collagenase, 1 % elastase for 1 h at 37 °C. The
cell culture medium (PromoCell, Heidelberg, Germany)
was supplemented with 1 % penicillin streptomycin and
0.1 % gentamycin. Passages from 3-5 were used for calci-
fication experiments. Calcification medium contained
3-mM calcium phosphate or 10 nM, 3 m M calcium
phosphate and 10 uM warfarin or 3 and 8 mM beta
glycerolphosphate (BGP) plus 3 mM calcium (all che-
micals from Sigma Aldrich, Munich, Germany). To
induce calcification, cells were cultured for 5 to 7 days
with calcification medium. A negative control (do)
was included in each setup to normalize the obtained
values and calcium deposits were depicted as mg/g
total protein.

Cardiovascular parameters

Transthoracic echocardiography was performed on the
Vevo 770 (Visualsonics, Ontario, Canada). Therefore, mice
were anesthetised with isoflurane (Abbott, IL, USA) and
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Fig. 1 Experimental design of the in vivo experiments. Ten WT or Gas6”~ mice received warfarin diet for 8 weeks or a uninephrectomy combined
with a high phosphate diet or uninephrectomy in combination with electrocauterization of the contralateral kidney together with high phosphate diet
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placed on a warming plate at 37 °C. Breathing and heart
frequency were monitored continuously. Left ventricular
(LV) mass was calculated in the M-mode in the long axis
view from the Devereux formula. Ejection fraction (EF) as
an index for global left ventricular systolic function were
measured by the Simpson's method. Stroke volume was es-
timated as the difference between the LV end-systolic and
end-diastolic volumes. Pulse-wave velocity in the right
common carotid artery and the abdominal aorta were mea-
sured using the transit-time method in a two-dimensional
mode. In the carotid artery, the proximal pulse-wave signal
was obtained 1 mm behind the origin of the subclavian ar-
tery, the distal signal 1 mm before the carotid bifurcation.
The transit time was found by subtracting the distal arrival
time between the ECG R-wave peak and the foot of vel-
ocity upstroke from the similarly determined proximal ar-
rival time [PWV = Ad/ (Ptyisc — Ptprox)], where Pt is the
time point of the proximal or distal pulse- wave signal and
Ad is the distance between the two measurements.

Biochemistry

Blood was collected by puncture of the left ventricle,
terminally. After sedimentation, serum was obtained
by centrifugation at 2000 x g for 10 min. Urine was
collected for 24 h before sacrifice. Serum and urine
parameters were measured by clinical routine labora-
tory diagnostics (Vitros 250, Ortho Clinical Diagnos-
tics, NY, USA).

Protein content was measured by the Pierce Bicincho-
ninic Acid method, as described by the manufacturer
(Thermo Fisher Scientific, IL, USA) [21].

Additionally, the murine serum was tested by total
ucMGP ELISA (VitaK BV, Maastricht, the Netherlands)
[22] and protein S ELISA Kit (antibodies online,
ABIN628120, Aachen, Germany).

RT-PCR
Genotyping of knockout animals and VSMCs was per-
formed as described previously [23].

RNA was isolated from RNAlater stabilized aortic tis-
sue (liver, abdominal aorta) (QIAGEN Rneasy, Hilden,
Germany). Purity and RNA concentration were analyzed
with the Agilent RNA 6000 Nano Kit (Agilent, Boblingen,
Germany). The reverse transcriptase was performed by the
Reverse Transcriptase Core Kit (RT-RTCK-05, Eurogentec,
Cologne, Germany). Quantification of MGP gene expres-
sion was performed on an Applied Biosystems 7500 Real-
Time PCR TagMan® system with external standards for
MGP (8.8 * 10° - 8.8 * 10) and GAPDH (6.4 * 10° — 64 *
10). MGP probe was 5AGAGTCCAGGAACGCAACAA
GCCTGC 3] sense primer 5 GCAGAGGTGGCGAGC
TAAAG 3 and antisense primer 5 AGCGCTCACAC
AGCTTGTAGTC 3. Cbfal sense primer was 5 CAAGT
AGCCAGGTTCAACGATCT 3; cbfal antisense 5 GAC
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TTGTATGGTCAAGGTGAAACTCTT 3’; OPN sense
5 GACCATGAGATTGGCAGTGATTT 3, OPN anti-
sense 5 GATCTGGGTGCAGGCTGTAAAG, Axl sense
5 TCTGGCTGGGAAAGTCAGAT 3; Axl antisense 5’
CAGCCGAGGTATAGGCTGTC 3’ [24]. GAPDH probe
was 5" AAGGCCGAGAATGGGAAGCTTGTCATC 3
sense primer 5° AAGTGGTGATGGGCTTCCC 3’ and
antisense primer 5 GGCAAATTCAACGGCACAGT 3.

Calcium measurement

Tissue calcium content was measured with the cre-
solphthalein assay. Tissues (kidney, heart, aortic arch)
were lyophilisated on a Christ Loc 1mALPHA 1-4
(Martin Christ, Osterode am Harz, Germany) coupled
with a vacuum hybrid pump RL 6 (Vacuubrand, Wertheim,
Germany). Calcium was mobilised in 10 % formic acid and
quantified by the cresolphthalein method (Randox Labora-
tories, Crumlin, UK). Absorption was measured at 550 nm
on a Tecan Sunrise microplate absorbance reader (Tecan,
Mennedorf, Switzerland).

Histochemistry

Localisation of phosphate crystals was analyzed by von
Kossa staining [25, 26] (kidney, heart base, descending
aorta). Sirius red staining was performed in heart tissues
by 5 % (w/v) Sirius red (Sigma Aldrich, Munich, Germany)
in picric acid (Sigma Aldrich, Munich, Germany) followed
by washing in acidified ethanol (70 % (v/v); pH 3.5). Apop-
tosis measurements were performed with the in situ cell
death detection kit (Roche, Ref. 11684817910, Basel,
Switzerland) according to the manufacturer’s protocol.
Cells were counterstained with DAPI (Vectashield, Vector
Laboratories, CA, USA). Apoptosis was quantified by
counting TUNEL positive VSMCs and by planimetric
analysis in aortic sections (Keyence BZ-II Analyzer,
Neu-Isenburg, Germany).

Statistics

Differences between treatment groups were assessed by
one-way ANOVA followed by Tukey’s multiple comparison
test. Equal variances were tested with Bartlett's method.
D’Agostino and Pearson normality test was performed to
check for Gaussian distribution. Statistical significance was
defined as p < 0.05, highly significant p < 0.001. Comparison
between only two groups was performed by Students t-test
in WT and knockout animals after different treatment
periods.

Results

In vitro VSMC calcification

In vitro, VSMC of WT and Gas6”~ mice were challenged
by calcification medium or by warfarin. Using calcifica-
tion medium, the deposition of calcium in VSMC in-
creased over time: though in early stages not significant,
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after 120 h the calcium content had increased 4-fold in
WT and 1.4-fold in Gas6”~ VSMC (Fig. 2a). After 168 h
of incubation, the calcium load of VSMC increased fur-
ther (significant for WT cells compared to 0 h). There
was no significant difference between VSMC from
Gas6” and WT mice (Fig. 2).

Warfarin treatment at a low dosage of 10 nM signifi-
cantly increased calcium deposition in WT cells after
120 h (WT typ0: + 648 % + 540 % change in calcium de-
position). Again, we could not observe a significant
difference in calcium load between Gas6’ and W'T-
derived VSMC (data not shown). Calcium phosphate
load led to an increased calcium deposition in WT
cells and the highest dosage of 10 uM of warfarin sig-
nificantly increased calcium deposition after 120 h in
Gas6™”" cells (Fig. 3).

Treatment with 3 mM BGP significantly increased
calcium deposits only in WT-VSMC after 120 h. Ca-
deposition at 8 mM BGP was similar in Gas6’" and
WT VSMC (data not shown).

The rate of VSMC apoptosis in calcification medium
increased significantly at 120 h and 168 h in WT cells.
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The rate of apoptosis was not different in Gas6”~ com-
pared to WT VSMC (Fig. 2b).

In vivo calcification models

Young healthy mice

In vivo, we first compared untreated animals of both
groups (Gas6”~ and WT). At the age of 8 weeks, out of
a number of serum parameters, only alkaline phosphat-
ase was lower in healthy Gas6”" than in WT mice
(Table 1). Echocardiography revealed a lower LV mass
in healthy WT mice compared to healthy Gas6”" at the
age of 8 weeks (Table 1).

We next tested whether in Gas6”~ mice upregulation of
the calcification inhibitor MGP occurred. However, in
Gas6”~ mice MGP gene expression and serum undercar-
boxylated MGP (ucMGP) levels were equal to WT (Fig. 4).
Similarly, serum levels of circulating protein S, which
shows a 43 % homology with Gas6 [10], did not differ be-
tween the mouse strains (Table 1). Expression of the
osteoblastic marker osteopontin was absent in aortas from
healthy WT mice and low in Gas6”” mice (Fig. 5).
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Fig. 2 Calcium deposition a Ca®" deposition in VSMC derived from Gas6” and WT mice after 168 h (h) of exposure to phosphate and calcium-enriched
cell culture medium. b TUNEL-positive VSMC of Gasé and WT mice after exposure to phosphate and calcium-enriched cell culture medium. VSMC (Vascular
Smooth Muscle Cells), WT (Wildtype); mean + SD; *: the increase in apoptosis was significant for WT cells after 120 h and 168 h compared to 0 h (p < 0.05);
** the increase in calcification was highly significant for WT cells after 168 h compared to 0 h (p < 0.001)
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Fig. 3 Calcium deposition a) Ca’" deposition in VSMC isolated from WT and Gas6” mice after treatment with calcium phosphate and warfarin

Older mice
Second, 34—36 week old mice were also assessed. Whereas
total serum protein was lower in Gas6”" mice, all other
serum parameters were comparable (Table 1). Calcium
content of the aortas, hearts and kidneys was not signifi-
cantly different between older Gas”" and WT mice
(Fig. 6a-c). Von Kossa staining revealed only minor calcifi-
cations in both groups without significant differences. No
differences in apoptosis rates in aortas were observed
(data not shown).

In older Gas6”~ mice MGP gene expression and serum
ucMGP level were equal to older WT (Table 1). No dif-
ferences were found in protein S levels as well (Table 1).

aging. Cbfal, Axl and OPN (Fig. 5) expression was simi-
lar between Gas6”~ and WT mice (Fig. 7).

Warfarin treatment

Third, warfarin administration was used to induce cal-
cification by blocking the posttranslational activation of
MGP and potentially Gas6. All mice survived warfarin
treatment. Serum total protein levels increased signifi-
cantly in both mouse strains. No significant differences
in soft tissue calcification were detected between WT
and Gas6”" mice (Fig. 6a), except for a lower cardiac
calcium content in Gas”™ mice after 8 weeks of warfarin

There was no difference in Gas6 expression during  (Fig. 6b).
Table 1 Basal biochemistry and echocardiography
8-9 weeks old, healthy 34-36 weeks old, healthy
Parameter C57BL/6 Gas6” C57BL/6 Gas6™"
Body weight [g] 202+0.7 186+ 16 301 +64 264+4.2
Serum parameter
Urea [mmol/l] 108+33 11619 661 60x£09
Creatinine [umol/I] 196+ 2.1 245+86 180+59 262+ 16.7
Calcium [mmol/I] 248 +£0.10 2.23£0.08 239+0.13 239+0.09
Phosphate [mmol/I] 3.11+£091 3.05+0.82 288045 2.85+0.34
Protein [g/dl] 446+0.74 490+0.15 6.00+ 042 550 £0.26%
Alkaline phosphatase [U/I] 255+ 106 256 +35 142 £ 54 207 + 69
ucMGP [nM] 3158 +458 2987 + 554 3523 £ 1645 3532+ 1095
Protein S [ng/ml] 097 £0.24 087+0.16 0.80+0.14 0.72+0.14
Echocardiography
Left ventricular mass [mg] 508+114 73.6+98* 986+ 152 81.8+295
Stroke volume [pl] 239490 203+6.3 236+6.2 198+43
Ejection Fraction [%] 543£11 456+78 40.1+96 415+£110
VACC [mm/ms] 2.09+0.98 206£1.15 213+£1.52 1.72£0.72

Baseline biochemical and functional characteristics of healthy wildtype and Gas6” mice at different ages (Mean + SD), ucMGP uncarboxylated matrix Gla protein,
Vacc pulse-wave velocity over the common carotid artery, WT wildtype *p < 0.05 to corresponding wildtype control
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As calcium content in WT mice after warfarin diet
was higher only in cardiac tissue compared to Gas6”"
mice, and data from the literature reported that calcifi-
cation appears in the vicinity of collagen fibres [27] and
Gas6 deficiency prevents fibrosis [28] we tested for dif-
ferences in the cardiac collagen content by Sirius red
staining. However, collagen-positive areas in cardiac

tissues were equal in warfarin-treated mice in Gas6”"
and WT mice. Serum levels of ucMGP after warfarin diet
did not show a significant difference between WT and
Gas6”'™ mice (Table 2). No differences were found in pro-
tein S (Table 2) in serum. No aortic apoptosis could be de-
tected in either of the groups. Cbfal, Axl and OPN (Fig. 5)
expression were similar in Gas6”~ and WT mice (Fig. 7).
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Fig. 5 Osteopontin expression; Osteopontin mMRNA expressed as relative expression per 1 million copies of GAPDH measured by RT-PCR; mean + SD
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Uninephrectomy

Fourth, UniNx (plus high phosphate diet) was used to ini-
tiate kidney damage. In both UniNx groups, 15-18 % of
the mice died. Early death occurred in 2 of 13 in the
Gas6”" mice during anaesthesia and in 2 of 11 WT mice.
In WT mice one animal died during surgery and the other
one 3 weeks after surgery. Serum creatinine increased
after surgery, compared to healthy animals, in Gas6”~ and
WT mice (+46 % in WT and +24 % in Gas6”", respect-
ively) (Table 2). Spotty calcification was present in the
aorta (Fig. 8a) and in cardiac tissue, however, without ob-
vious differences between Gas6” and WT mice (Fig. 6b).
Within the heart, calcifications mainly located to the
valves (Fig. 8b). The most prominent calcification was
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found in kidney tissues in both strains, spreading through-
out all structures with accumulation in the renal cortex
(Fig. 8c). Again, there was no significant difference be-
tween the two mouse strains with respect to tissue cal-
cium content (Fig. 6a-c).

Echocardiography after UniNx revealed decreased ejec-
tion fractions in WT compared to Gas6”~ (Table 2). Ejec-
tion fraction and stroke volume were lower in both strains
than in healthy controls. No aortic apoptosis could be de-
tected in both groups. In Gas6”~ mice MGP gene expres-
sion, serum ucMGP and protein S levels were equal to
WT (Table 2). Cbfal expression significantly increased in
Gas6"~ compared to WT mice, however this could not be
observed in the electrocautery group. Axl and OPN (Fig. 5)
expression were similar between Gas6” and WT mice
(Fig. 7).

Electrocautery

Finally, electrocautery of the contralateral kidney was
used in addition to UniNx (plus high phosphate diet) to
further increase the extent of kidney damage. In the
electrocautery group, all WT mice survived the surgical
protocol, however, the Gas6”~ mice, showed decreased
survival without detectable change in body weight rela-
tively early after surgery, and only 40 % survived to the
end of the experiment (Fig. 9), thus all data below have
to be interpreted with this caveat in mind. No obvious
cause for the high mortality could be identified.

Serum calcium, phosphate and creatinine were signifi-
cantly increased in WT and surviving Gas6”~ mice after
electrocautery compared to the corresponding healthy
controls (Table 2). Calcium content in the aortas and
hearts of Gas6”" mice was slightly higher than in WT,
however, without a significant difference (Fig. 6). Calcifica-
tion spots were found in a similar pattern as after UniNx
in all kidney structures in both WT and Gas6”~ mice.

Electrocautery decreased ejection fraction and stroke vol-
ume only significantly in WT mice (Table 2). No relevant
aortic apoptosis could be detected in either of the groups.
In Gas6”" mice aortic MGP gene expression (Table 2),
serum ucMGP and protein S level were equal to WT
(Table 2). Cbfal, Axl and OPN (Fig. 5) expression were
similar in Gas6”~ and WT mice (Fig. 7).

Discussion
Gas6 has repeatedly been suggested to mediate vitamin
K effects in vascular calcification in addition to MGP.
To evaluate the role of Gas6 protein in vascular calcifi-
cation, we compared mice deficient in Gas6 protein with
WT mice. VSMC and mice were exposed to different
calcification and kidney disease models.

The major finding of this study is that both in vitro
and in vivo vascular as well as organ calcification of WT
and Gas6”" mice were not different. Previously, Gas6
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Table 2 Final biochemistry and echocardiography
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Parameter C57BL\6 Gas6””
Model Warfarin UniNx Electrocautery Warfarin UniNx Electrocautery
Body weight [g] 229+16 244 £ 2. 2% 223+16 191+1.7 19.1+£3.2% 185+3.0
Serum parameter
Urea [mmol/l] 6.27 £0.63*** 1026 £3.58 1058+ 1.62 643+1.29 1025+2.56 17.1+11.58
Creatinine [umol/I] 220+17 25.1 & 2.4%%xx 30.3 £ 3.7%%* 236+632 299+ 14 303+38
Calcium [mmol/I] 2.58 £0.09 250+£0.12 273 £0.14%%% 267 +£0.17 250+£0.12 2.84+0.27%%*
Phosphate [mmol/I] 284+022 2.78+029 290+030 3.68+0.60 347+089 391+068
Protein [g/dL] 6.58 + 0.38*** 5.74 + 0.74%%% 547 £ 049%* 6.03 +0.32%%* 5700377 541055
Alkaline phosphatase [U/I] 205+ 27 173+65 166 + 36 228 46 201 64 187+74
UcMGP [nMV] 5374+ 1368 4369 £ 855 3810+ 1283 5963 + 2612 4903 + 1688 4970 + 489
Protein S [ng/ml] 1.05+0.19 0.80+0.12 0.72+0.03 0.83+0.24 0.83+0.23 083027
Echocardiography
Left ventricular mass [mg] 790+ 22 60.7 £ 15 59112 69.2+14.7 74.1+£285 614+166
Stroke volume [pl] 220+60 134+27 104+28 206+43 244489 102+6.2
Ejection Fraction [%] 466116 333+£138 33774 448+26 584+ 21% 384+18
VACC [mm/ms] 197+071 269+ 1.01 1.78 £0.46 226+2.14 303+1.38 1.98 +0.37
24 h urine
GFR [pL/min] 769 +£369 552+324 47+213 56.6 £32.8 41.6+281 404+130
Protein [mg/dl] 26. £ 17 13 £ 4.6 6.7 £ 1.9 140+49 9.5+ 6% 17.7+42
Creatinine [umol/I] 2071 + 2005 3853+ 2520 3062+ 1133 4283 +3853 2175+ 667 914+ 179

*p < 0.05 to corresponding wildtype group *** p < 0.05 to healthy control group ****p < 0.001 to healthy control group
Biochemical and functional characteristics of wildtype and Gas6”" after 8 weeks of treatment (Mean + SD), GFR glomerular filtration rate, ucMGP uncarboxylated
matrix Gla protein, UniNx uninephrectomy, VACC pulse-wave velocity over the arteria carotis communis)

mRNA stabilisation was found to be a protective mech-
anism of statins in cell culture experiments [16]. In these
in vitro experiments, Gas6 mediated protection against
calcification. However, these findings were obtained only
in vitro and in contrast to the present study, no in vivo
verification was attempted.

Transformation of VSMC into an osteoblastic pheno-
type is a highly regulated process. Among others, the
vitamin K-dependent protein MGP [29] and apoptosis,
in particular apoptotic bodies [30, 31], have been shown
to play important roles in the calcification process. The
vitamin K-dependent protein Gas6 reportedly mediates
anti-apoptotic effects [15] and could thereby conceivably
prevent calcification like MGP. However, here we failed
to observe increased apoptosis in Gas6”~ mice in vivo
and in vitro when compared to WT mice and we thus
cannot confirm a role of Gas6 in an anti-apoptotic path-
way in our uremia and calcification models.

To test for other potential counterregulatory mecha-
nisms against calcification in the Gas6”~ mice that might
have compensated for the lack of Gas6 functions, we an-
alyzed MGP gene expression, ucMGP staining in the
aorta and ucMGP serum levels. MGP is known to be the
most important local calcification inhibitor in the vessel
wall [7]. MGP, like Gas6, is vitamin K dependent for

bioactivity and could act as a compensatory mechanism
for the lack of Gas6. However, MGP was neither upregu-
lated at the mRNA level in the aortic wall nor did we find
increased differences between Gas6”~ and WT mice with
respect to circulating ucMGP serum levels. Ax] expression,
an inhibitor of apoptosis and thus vascular calcification,
was also unaltered in Gas6”™ mice. Its ligand besides Gas6,
protein S was equal in all our in vivo groups and therefore
seems unlikely to act as a counterregulator in our models.

Interestingly, Gas6”™ mice exhibited a higher left ven-
tricular mass despite a lower body weight. This might
also partially explain why the ejection fraction after sur-
gery in WT was significantly lower than in Gas6-/- mice
(Tables 1 and 2).

Strikingly, calcium content of the myocardium was
significantly lower in Gas6”~ mice compared to WT after
warfarin diet. Chemical quantification and von Kossa
staining revealed only weak total myocardial calcification
in Gas6”” and WT. Cardiac calcification is also associ-
ated with fibrosis [32] and Gas6 deficiency has been
shown to prevent fibrosis [28]. Therefore, we speculate
that protective effects of lack of Gas6 might depend on a
different collagen content of the hearts. However, in our
study, cardiac collagen staining was equal in both Gas6
and WT mice.
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WT (Wildtype) compared to Gas6”™ mice. WT: Magnification 400x
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Fig. 8 Localisation of calcium deposits; Von Kossa staining of the aorta (a, d, g, j), heart (b, e, h, k) and kidney (c, f, i, I) after uninephrectomy in

We observed a reduced survival of the knockout mice
after electrocauterization plus UniNX compared to WT.
As the mice died at different time points close to the oper-
ation procedures, calcification processes appear unlikely
to be the cause of premature death. One can speculate
that inflammatory processes may play a role. For example,
Gas6 secretion is stimulated by TGF-f8 [33] and it was
found to be expressed in atherosclerotic plaques by VSMC
and negatively associated with inflammation [33]. In our
experiments, however, we observed neither signs of in-
flammation in the vessel tissue nor accumulation of

Percent survival
(4]
o
1

weeks

Fig. 9 Survival; Kaplan-Meier curve after electrocautery surgery in WT
(Wildtype) and Gas6” mice

collagen fibers in Sirius red staining. Gas6 protein was
shown to enhance interactions of endothelial cells and
leukocytes. Inflammation as a cause seems unlikely, as
leukocyte infiltration is reduced in Gas6”" animals [34].
Other potential reasons could play a role in the decreased
survival rate. The initial slightly lower body weight of the
knockouts might hamper their survival after electro-
cautery. Alternatively, Gas6 knockout mice were reported
to display platelet dysfunction [35] and Gas6 protein con-
tributes to thrombus formation [23]. However, altered
coagulation of the uremic Gas6”~ mice are again unlikely
to have contributed to increased mortality, as we could
not find evidence for hemorrhage or infarctions. Con-
firmatory to our results, AxI”~ mice were recently found
to have a reduced survival after renal mass reduction and
high phosphate diet, but significant vascular calcification
was not induced. Axl activation might reduce the progres-
sion of tubulo-interstitial apoptosis [24] and activates sev-
eral cell survival factors [12].

One potential limitation of this study is the C57BL/6 gen-
etic background of the mice. Black six mice calcify to a
lesser extent than DBA/2 mice [36, 37]. With additional
trigger, i.e. on top of nephrectomy, calcification in B6 mice
is possible. Mice lacking fetuin A on a black six background
(B6,129-Ahsgtm1Mbl) develop ectopic microcalcifications
in soft tissues [25, 26, 38] and only when backcrossed onto
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a DBA/2 background, does severe calcification develop
[25]. Again, warfarin induced remarkable calcification
in DBA/2 mice [39]. Nevertheless, in all of our models,
minor calcification could be induced and the lack of ag-
gravated calcification by depletion of Gas6 does not
support a major role in vascular calcification
pathogenesis.

Conclusion

Taken together, we were not able to prove a prominent
role of Gas6 in vascular calcification. Further studies
should confirm the role of Gas6 in disease models.

Abbreviation

BGP, Beta glycerol phosphate; EF, Ejection fraction; KH2, Vitamin K
hydroquinone; LV, Left ventricular; MGP, Matrix gla protein; OPN, Osteopontin;
PWV, Pulse wave velocity; ucMGP, Uncarboxylated matrix gla protein; VSMC,
Vascular smooth muscle cells; WT, Wildtype.
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